€5
S0%,

Science & Technology 5. ecoLe L)
@ Facilities Council POLYTECHNIQUE \%<\/%¢

5
e
2

MONTREAL

GALAHAD CHECK

USER DOCUMENTATION GALAHAD Optimization Library version 5

1 SUMMARY

This package uses finite difference approximatiorchteck the gradient of an objective functionf (x), the Jacobian
matrix of a constraint function c(x), and the second derivative Hessian matrix of the Lagrangiarfunction
L(x,y) = f(x) —c(x)Ty. These quantities are typically associated with a nontioptimization problem

minimize f(x)
subject to the general linear constraints
a} SaiTXSai!J; i:].,...,rna,

general nonlinear constraints

and simple bound constraints
ji=1...,n,

where the vectors;, &, a¥, ¢, ¢, x', andx" are given, and the vectossc R” andy € R™ are known as the
primal and dual (Lagrange multiplier) vectors, respedyiv&he user may choose to perform a “cheap” verification
of the requested derivatives, or a more detailed and “exp&hsheck. Function values can be supplied via internal
subroutine evaluation or reverse communication.

ATTRIBUTES — Versions: GALAHAD_CHECK si ngl e andGALAHAD_CHECK doubl e. Uses:GALAHAD_SYMBCLS, GAL-
AHAD_SPECFI LE, GALAHAD_SPACE, GALAHAD_MOP, GALAHAD_SMT, andGALAHAD_NLPT. Date: September 201@rigin:
D. P. Robinson, University of Oxford, UK, and N. I. M. GouldutRerford Appleton Laboratorl.anguage: For-
tran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requiredSk statement such as

Single precision version
USE GALAHAD_CHECK_si ngl e

Double precision version
USE GALAHAD_CHECK doubl e

If it is required to use both modules at the same time, theveeriypesSMI_t ype, NLPT_pr obl emt ype, CHECK -
control _t ype, CHECK.i nf or m.t ype, CHECK_dat a_t ype, CHECK_r ever se_comuni cat i on_t ype andNLPT_user dat a_-
type (Section 2.2), and the subroutin@4ECK_i nitial i ze, CHECK veri fy, CHECK_t er ni nat e (Section 2.3), and
CHECK_r ead_specf i | e (Section 2.7) must be renamed on one ofUWBE statements.

2.1 Matrix storage formats

The Jacobian matrif = Oyc(x) and the Hessian matrbt = OxL(x,y) may be stored in a variety of input formats.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013) 1

CHECK GALAHAD

2.1.1 Dense storage format

The matrixJ is stored as a compact dense matrix by rows, that is, the valuthe entries of each row in turn are
stored in order within an appropriate real one-dimensianaly. Componentix (i — 1) + j of the storage arrajfval

will hold the valuejjj fori =1,...,mandj =1,...,n. SinceH is symmetric, only the lower triangular part (that is the
parth;j for 1 < j <i < n) should be stored. In this case the lower triangle will beestdoy rows, that is component
i+ (i—1)/2+ j of the storage arralyfval will hold the valueh;; (and, by symmetnyh;) for 1 < j <i <n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. Fdrthentry ofJ, its row index, columnindex and valuejj;

are stored in théth components of the integer array ow, J% ol and real array%al . The order is unimportant,
but the total number of entrid8me is also required. Sindd is symmetric, the same scheme is applicable, except that
only the entries in the lower triangle should be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time #reyordered so that those in rowppear directly before
those in rowi + 1. For thei-th row of J, thei-th component of a integer arra$pt r holds the position of the first
entry in this row, whilel%t r (m+ 1) holds the total number of entries plus one. The column irgi@nd values;;
of the entries in thé-th row are stored in componerits- J%tr (i), ... J%tr (i+ 1) — 1 of the integer array%ol ,
and real array%al , respectively. Sincél is symmetric, the same scheme is applicable, except thatloalentries
in the lower triangle should be stored.

For sparse matrices, this scheme almost always requiesti@sge than its predecessor.

2.1.4 Sparse column-wise storage format

Again only the nonzero entries are stored, but this time #reyordered so that those in colummappear directly
before those in columf+ 1. For thej-th column ofJ, the j-th component of the integer arrd9fptr holds the
position of the first entry in this column, whil®ptr (n+ 1) holds the total number of entries plus one. The row
indicesi and valuegj; of the entries in thg-th column are stored in componehts J%tr (j), ... J%tr (j+1)—1

of the integer array% ow, and real array%al , respectively. Sincél is symmetric, the same scheme is applicable,
except that only the entries in the lower triangle shouldtbeesl.

2.1.5 Diagonal storage format

If Jis diagonal (i.e.jij = 0 for all 1L <i # j < n) only the diagonal entrieg; for 1 <i < nshould be stored, and the
first n components of the arralval should be used for this purpose. The same holdsifor

2.2 The derived data types

Seven derived data types are accessible from the package.

2.2.1 The derived data type for holding matrices

The derived data typ®MI_TYPE is used to hold the Jacobian matdand the Hessian matri{. The components of
SMI_TYPE used here are:

m is a scalar component of type defaulTEGER that holds the number of rows of the matrix.

n is a scalar component of type defaulTEGER that holds the number of columns of the matrix.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

2 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

ne s ascalar variable of type defallNTECGER that holds the number of matrix entries.

type is a rank-one allocatable array of type defsa@HARACTER that is used to indicate the matrix storage scheme
used. Its precise length and content depends on the typetokimebe stored (see §2.2.2).

val is arank-one allocatable array of type def&HAL (double precision ifGALAHAD_CHECK doubl €) and dimen-
sion at leashe, that holds the values of the entries. Each pair of off-digjentriesh; = hj; for the symmetric
matrix H is represented as a single entry (see §2.1.1-2.1.3). Anljcdtgl entries that appear in the sparse
co-ordinate, row-wise, or column-wise schemes will be swthm

row isarank-one allocatable array of type defAlWTEGER, and dimension at leasg, that may hold the row indices
of the entries (see §2.1.2).

col is a rank-one allocatable array of type defdWNTEGER, and dimension at least, that may hold the column
indices of the entries (see §2.1.2-2.1.3).

ptr is a rank-one allocatable array of type defdiNTEGER. If sparse row-wise storage is used (see §2.1.3), then it
must have dimension at least+ 1 and hold the pointers to the first entry in each row. If spacderan-wise
storage is used (see §2.1.4), then it must have dimensieasth| + 1 and hold the pointers to the first entry in
each column.

2.2.2 The derived data type for holding the problem

The derived data typd_PT_pr obl emt ype holds the problem. The relevant componentSldiT_pr obl emt ype are:

m is a scalar variable of type defalNTEGER that holds the number of nonlinear constraimis
n is a scalar variable of type defallNTEGER that holds the number of optimization variabtes

H is scalar variable of typ8MI_TYPE that holds the Hessian matrik = Ox f (X). The following components are
used here:

HY% ype is an allocatable array of rank one and type def@HRRACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section®uséjl, the first five componentstdfi ype
must contain the strinBENSE. For the sparse co-ordinate scheme (see Section 2.1.%)tghten com-
ponents ofH% ype must contain the strin@OORDI NATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen componentsiidfype must contain the strin§PARSE_BY_ROWS, for the
sparse column-wise storage scheme (see Section 2.1.4)stheeventeen componentsidfi ype must
contain the stringsPARSE_BY_COLUWNS, and for the diagonal storage scheme (see Section 2.1e5fr¢h
eight components d#% ype must contain the strinBl AGONAL.

For convenience, the proced @l _put may be used to allocate sufficient space and insert the ezjuir
keyword intoH% ype. For example, ifil p is of derived typeCHECK pr obl emt ype and involves a Hessian
we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nl p%% ype, ' COORDI NATE')
See the documentation for tiBALAHAD packageSMT for further details on the use 8MI _put .

Hine is a scalar variable of type defalUNTEGER, that holds the number of entries in tosver triangular part
of H in the sparse co-ordinate storage scheme (see Section. dtlheed not be set for any of the other
four schemes.

Hival is a rank-one allocatable array of type def&ifL (double precision iftALAHAD_CHECK doubl €), that
holds the values of the entries of tlwver triangular part of the Hessian matrid in any of the storage
schemes discussed in Section 2.1.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8,2013) 3

CHECK GALAHAD

H% ow is a rank-one allocatable array of type defdiNTEGER, that holds the row indices of tHewer trian-
gular part ofH in the sparse co-ordinate storage scheme (see Section &itl2he sparse column-wise
scheme (see Section 2.1.4). It need not be allocated forfahg other three schemes.

H¥eol is a rank-one allocatable array variable of type defaNRECGER, that holds the column indices of the
lower triangular part ofH in either the sparse co-ordinate (see Section 2.1.2), aphese row-wise (see
Section 2.1.3) storage scheme. It need not be allocatedjoofahe other three schemes.

H¥pt r is arank-one allocatable array of dimensieii and type defaultNTEGER that holds the starting position
of each row of thdower triangular part of H, as well as the total number of entries plus one, in the
sparse row-wise storage scheme (see Section 2.1.3), aittiec position of each column of thewer
triangular part ofH, as well as the total number of entries plus one, in the spanisgnn-wise storage
scheme (see Section 2.1.4). It need not be allocated whertttbeschemes are used.

J is scalar variable of typ8MI_TYPE that holds the Jacobian matidx= Uxc(x). The following components are
used here:

J% ype is an allocatable array of rank one and type def&HRRACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section2uséy, the first five componentssh ype
must contain the strinBENSE. For the sparse co-ordinate scheme (see Section 2.1.Z)rgheen com-
ponents of]% ype must contain the strin@OORDI NATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen component3%fype must contain the strin§PARSE_BY_ROWS, for the
sparse column-wise storage scheme (see Section 2.1.4)stheeventeen components 3 ype must
contain the stringgPARSE_BY_COLUWNS, and for the diagonal storage scheme (see Section 2.1e5frgh
eight components af% ype must contain the strinBl AGONAL.

For convenience, the proced 8l _put may be used to allocate sufficient space and insert the estjuir
keyword intoJ% ype. For example, ifil p is of derived typ&HECK pr obl emt ype and involves a Jacobian
we wish to store using the co-ordinate scheme, we may simply

CALL SMI_put(nl p%Jd% ype, ' COORDI NATE')
See the documentation for tBALAHAD packageSMT for further details on the use 8V _put .

J%e is a scalar variable of type defaulNTEGER that holds the number of entries in the sparse co-ordinate
storage scheme (see Section 2.1.2). It need not be set fof #imy other schemes.

J%al is a rank-one allocatable array of type def&HAL (double precision iftALAHAD_CHECK doubl €) that
holds the values of the entries of the Jacobian maltiix any of the storage schemes discussed in Sec-
tion 2.1.

J% ow is a rank-one allocatable array of type defdlNTEGER that holds the row indices dfin the sparse co-
ordinate storage scheme discussed in Section 2.1.2 anddhsescolumn-wise storage scheme discussed
in Section 2.1.4. It need not be allocated for any of the dttivexe schemes.

J%ol is a rank-one allocatable array variable of type defaNREGER that holds the column indices dfin
either the sparse co-ordinate scheme discussed in Secligh@ the sparse row-wise scheme discussed
in Section 2.1.3. It need not be allocated for any of the atiivexe schemes.

J%tr for the sparse row-wise storage scheme discussed in S&clid it is a rank-one allocatable array of
dimensionm+1 and type default NTEGER that holds the starting position of each rowXbés well as the
total number of entries plus one. For the sparse column-stisage scheme discussed in Section 2.1.4, it
is a rank-one allocatable array of dimensieri and type default NTEGER that holds the starting position
of each column ofl as well as the total number of entries plus one. It need nollbeated for any of the
other schemes.

G is a rank-one allocatable array of dimensioand type defaulREAL (double precision irfGALAHAD_CHECK -
doubl e), that holds the gradierg of the objective function. The¢-th component of5, j = 1,...,n, contains

9;-

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

4 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

C is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_CHECK -
doubl e) that holds the value of the constraint function. Tjkln component o€, j = 1,...,m, contains;.

f is a scalar variable of type defalEAL (double precision ifGALAHAD_CHECK doubl €) that holds the value of
the objective function.

X is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_CHECK_-
doubl e), that holds the values of the optimization variables. Thieth component o, j =1,...,n, contains
Xj.

X is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_CHECK -
doubl e) that holds the lower bounds on the optimization variakles

X.u is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_CHECK -
doubl e) that holds upper bounds on the optimization variakles

Y is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_CHECK_-
doubl e) that holds the valug of the Lagrange multiplier estimate. Theh component off, j =1,...,m,
containsy;.

2.2.3 The derived data type for holding control parameters

The derived data typ@HECK cont r ol _t ype is used to hold controlling data. Default values may be oletby calling
CHECK.initial i ze (see Section 2.3.1), while components may also be changedlliryg GALAHAD_CHECK_r ead-
_spec (see Section 2.7.1). The component€idECK cont r ol _t ype are:

error is a scalar variable of type defalNTEGER, that holds the stream number for error messages. Printiegar
messages iBHECK veri fy andCHECK t er mi nat e is suppressed #rror < 0. The defaulti®rror = 6.

out is a scalar variable of type defallNTEGER, that holds the stream number for informational messagastirigy
of informational messages CHECK veri fy is suppressed dut < 0. The defaultiput = 6.

print I evel is a scalar variable of type defalNTECGER, that is used to control the amount of informational output
which is required. No informational output will occurfint | evel < 0. If print_level =1, a brief
summary of the derivative verification is providedptfi nt _| evel > 2, this output will be increased to provide
significant detail of each iteration (see Section 2.8 foremdetails). The defaultisrint _| evel = 0.

verify_l evel is a scalar variable of type defallNTEGER that determines the detail of verification performed. A
“cheap” check will be performed ierify_level = 1. If verify_level > 2, an “expensive”—but more
detailed—verification of the derivatives is done. No chagkis performed ifrerify_| evel < 0. The default
isverify_level = 2.

f _avail abil ity isascalarvariable of type defalUNTEGER that controls how the user is expected to supply objective
function values, when required. The user should s&tai | abi | i t y = 1 if an appropriate evaluation routine is
supplied (see Section 2.4.1), andvai | abi | i ty = 2 if reverse communication will be used (see Section 2.5).

c_availability is a scalar variable of type defallNTEGER that controls how the user is expected to supply con-
straint function values, when required. The user should seti | abi | ity = 1 if an appropriate evaluation
routine is supplied (see Section 2.4.2), andvai | abi | ity = 2 if reverse communication will be used (see
Section 2.5). Any other value will result in an error message

g-availability is a scalar variable of type defallNTEGER that controls how the user is expected to supply the
gradient of the objective function, when required. The w$euld seg_avai l abi | ity = 1 if an appropriate
evaluation routine is supplied (see Section 2.4.3),@adai | abi | ity = 2 if reverse communication will be
used (see Section 2.5). Any other value will result in anrarressage.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8,2013) 5

CHECK GALAHAD

J_availability is a scalar variable of type defallNTEGER that controls how the user is expected to supply the
Jacobian of the constraint function, when required. The siseuld setl _avai | abi | ity = 1 if an appropriate
evaluation routine is supplied (see Section 2.414yai | abi | i ty = 2 if reverse communication will be used
to obtain Jacobian values (see Section 2]5yai | abil ity = 3 if an appropriate Jacobian-vector product
routine is supplied (see Section 2.4.6), dnalvai | abi | i ty = 4 if reverse communication will be used to get
Jacobian-vector products (see Section 2.5). Any otheewalli result in an error message.

Havail ability is a scalar variable of type defaulNTEGER that controls how the user is expected to supply the
Hessian of the Lagrangian function, when required. The siseuld seH avai | abi | i ty = 1 if an appropriate
evaluation routine is supplied (see Section 2.45)yai | abi | i t y = 2 if reverse communication will be used to
obtain Hessian values (see Section 2Bjyai | abi | i ty = 3 if an appropriate Hessian-vector product routine
is supplied (see Section 2.4.7), atdvai | abi | i ty =4 if reverse communication will be used to get Hessian-
vector products (see Section 2.5). Any other value will itdauan error message.

checkG is a scalar variable of type defauld@ CAL that should be setTRUE. if the gradient of the objective function
should be checked. Otherwise, it should be $&LSE. . The defaultisheckG=. TRUE. .

checkJ is a scalar variable of type defauld@ CAL that should be seffRUE. if the Jacobian of the constraint function
should be checked. Otherwise, it should be $&t SE. . The default icheckJ =. TRUE. .

checkH is a scalar variable of type defall©0G CAL that should be setTRUE. if the Hessian of the Lagrangian
function should be checked. Otherwise, it should be BALSE. . The default icheckH=. TRUE. .

deal | ocat e_error _fatal is a scalar variable of type defaul®G CAL, that must be setTRUE. if the user wishes to
terminate execution if a deallocation fails, arfALSE. if an attempt to continue will be made. The default is
deal | ocate_error fatal = .FALSE .

2.2.4 The derived data type for holding informational parameters

The derived data typ€HECK.i nf or m.t ype is used to hold parameters that give information about togneiss and
needs of the algorithm. The component£HECK_i nf or m.t ype are:

stat us is ascalar variable of type defaUNTEGER that gives the exit status of the algorithm. See Sectionard3.6
for further details.

al l oc_stat us is a scalar variable of type defallNTEGER that gives the status of the last attempted array allocation
or deallocation. This willbe O iftatus = 0.

bad_al | oc is a scalar variable of type defa@lARACTER and length 80 that gives the name of the last internal array
for which there was an allocation or deallocation error.shaill be the null string ifstat us = 0.

nunG.w ong is a scalar variable of type defallliTEGER that gives the number of components of the gradient of the
objective function that appear to be wrong.

num]_wrong is a scalar variable of type defadlNTEGER that gives the number of entries of the Jacobian of the
constraint function that appear to be wrong.

nunH.wr ong is a scalar variable of type defalllN\TEGER that gives the number of entries of the Hessian of the La-
grangian function that appear to be wrong.

derivative_ok is a scalar variable of type defaul®G CAL that is. TRUE. if all derivatives appear to be correct, and
set. FALSE. otherwise.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

6 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

2.2.5 The derived data type for holding problem data

The derived data typ€HECK dat a_t ype is used to hold all the data for a particular problem, or saqas of prob-
lems with the same structure, between callsCECK procedures. The only data that should be changed by the
user from the initial call taCHECK_i ni ti al i ze to the final call toCHECK t er mi nat e is the componenRC of type
CHECK_r ever se_conmuni cat i on_t ype (see Section 2.2.6), and this should be done only as dirdéaed GALAH
AD_CHECK ver i fy with positive values of nf or n¥st at us as described in Section 2.5.

2.2.6 The derived data type for holding reverse communicatin data

The derived data typEHECK_r ever se_comruni cati on_t ype is used to hold data for reverse communication, when
needed. The components@IECK r ever se_conmuni cati on_t ype are:

X is a rank-one allocatable array of type defé&RHAL (double precision irGALAHAD_CHECK doubl e) that holds the
values of the optimization variables at which the user mastgom function computation.

Y is a rank-one allocatable array of type defaRHAL (double precision irGALAHAD_CHECK doubl e) that holds the
values of the Lagrange multipliers that the user must usenwelialuating the Hessian of the Lagrangian.

F is a scalar variable of type defalEAL (double precision ittALAHAD_CHECK doubl e) in which the user places the
value of the objective function evaluatedXatvhen required (see Section 2.5).

C is arank-one allocatable array of type def&ihL (double precision ifcALAHAD_CHECK doubl e) in which the user
places the value of the constraint function evaluatet] athen required (see Section 2.5).

G is arank-one allocatable array of type def&iAL (double precision iftALAHAD_CHECK doubl e) in which the user
places the gradient of the the objective function evaluat&lwhen required (see Section 2.5).

V is a rank-one allocatable array of type defé&RHAL (double precision irGALAHAD_CHECK doubl e) that holds the
vector for which a matrix-vector product is required (seetiba 2.5).

U is a rank-one allocatable array of type def&iéL (double precision itALAHAD_CHECK_doubl e) in which the user
places the result of any required matrix-vector produdhhie vectol from above (see Section 2.5).

Jval is arank-one allocatable array of type def&AL (double precision iftALAHAD_CHECK doubl e) in which the
user places the entries of the Jacobian matrix evaluatédndten required (see Section 2.5).

Hval is a rank-one allocatable array of type defd&HAL (double precision ifcALAHAD_CHECK doubl e) in which the
user places thiower triangular entries of the Hessian matrix of the Lagrangian evaluatetiatdY, when
required (see Section 2.5).

2.2.7 The derived data type for holding user data

The derived data typdLPT_user dat a_t ype is available to allow the user to pass data to and from usgptsd sub-
routines for function and derivative calculations (segti®a®.4). Components of variables of tyldePT_user dat a_t ype
may be allocated as necessary. The following componentvaikable:

i nteger is arank-one allocatable array of type defdiNTEGER.
real is arank-one allocatable array of type def&ifL (double precision iftALAHAD_CHECK doubl e)

conpl ex is a rank-one allocatable array of type defal@MPLEX (double precision complex iGALAHAD_ CHECK -
doubl e).

character is arank-one allocatable array of type defd@HARACTER.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013) 7

CHECK GALAHAD

| ogi cal is arank-one allocatable array of type defau@@ CAL.
i nt eger _poi nt er is a rank-one pointer array of type defaluTEGER.
real _poi nter is arank-one pointer array of type defaRBAL (double precision ifGALAHAD_CHECK doubl €)

conpl ex_poi nter isarank-one pointer array of type defalfVPLEX (double precision complex iBALAHAD_CHECK -
doubl e).

charact er _poi nter is a rank-one pointer array of type defaOHARACTER.

| ogi cal _poi nter is arank-one pointer array of type defaud CAL.

2.3 Argument lists and calling sequences

There are three procedures for user calls (see SectionXiIrtoer features):

1. The subroutin€HECK_ i ni ti al i ze is used to set default values, and initialize private dagégie verifying the
derivatives of one or more problems with the same sparsitybaund structure.

2. The subroutin€HECK veri f y is called to check the derivatives of the given problem.

3. The subroutin€HECK_t er i nat e is provided to allow the user to automatically deallocatayacomponents
of the private data, allocated HECK veri fy, at the end of the verification process. It is important tolds if
the data object is re-used for another probieith a different structure sinceCHECK.i ni ti al i ze cannot test
for this situation, and any existing associated targetissabsequently become unreachable.

We use square brackdts] to indicateOPTI ONAL arguments.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL CHECK.initialize(control)
control is a scalad NTENT(QUT) argument of typeCHECK control _t ype (see Section 2.2.3). On exitpnt r ol
contains default values for the components as describeedtidd 2.2.3. These values should only be changed
after callingCHECK.i ni ti al i ze.

2.3.2 The verification subroutine

The verification algorithm is called as follows:

CALL CHECK.verify(nlp, data, control, inform userdata[, eval _F, eval _C &
eval .G eval J, eval H eval Jv, eval _Hv])

nlp is a scalat NTENT(I NOUT) argument of type\LPT_pr obl emt ype (see Section 2.2.2). It is used to hold data
about the problem whose derivatives are being verified. Favaproblem, the user must allocate all the array
components, and set values fop%m nl p%, and the required integer componentbp% andnl p% that
is determined by the values ofieckJ andcheckH as described in Section 2.2.3. Users are free to choose
whichever of the matrix formats described in Section 2.Jpggrapriate forJ andH for their application.

The components| p%X andnl p%' must be set to initial valuesandy of the primal and dual variables for the
optimization problem. Prior to verification of the derivass, the poindl p% is modified internally to ensure
feasibility with respect to the bound constrairtsandx¥; no modification ofy is performed. The requested
derivatives are then checked at the paint%X andnl p%y.

Restrictions: nl p% > 0 andnl p%m> 0.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

8 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

dat a is a scalaf NTENT(| NOUT) argument of typ&€HECK dat a_t ype (see Section 2.2.5). Itis used to hold data about
the problem derivatives being verified. With the possiblesgtion of the componeRC (see Sections 2.2.6 and
2.5), it must not have been alterby the usersince the last call t6GHECK.i ni ti al i ze.

control isascalat NTENT(IN) argument of typ€HECK_contr ol _t ype (see Section 2.2.3). Default values may be
assigned by callin@HECK_i ni ti al i ze prior to the first call taCHECK sol ve.

i nform is a scalad NTENT(I NOUT) argument of typeCHECK i nf or mt ype (see Section 2.2.4)On initial entry,
the componentst at us must be set to the value 1. Other entries need not be set. A successful call to
CHECK_veri fy is indicated when the componesitat us has the value 0. For other return valuesdt us, see
Sections 2.5 and 2.6.

userdata is a scalarl NTENT(| NOUT) argument of typeNLPT_user dat a_t ype whose components may be used
to communicate user-supplied data to and from@A8 ONAL subroutinesval _F, eval _C, eval _G, eval _J,
eval _H, eval _Jv, andeval _Hv (see Section 2.2.7).

eval _F is anOPTI ONAL user-supplied subroutine whose purpose is to evaluatelfleetive functionf (x) at a given
vectorx. See Section 2.4.1 for details.flfavai | abi | ity =1 (see Section 2.2.3), themal _F must be present
and declare@®XTERNAL in the calling program. If _avai | abi | ity = 2, thenGALAHAD_CHECK ver i fy will use
reverse communication to obtain objective function valigeg Section 2.5).

eval _C is anOPTI ONAL user-supplied subroutine whose purpose is to evaluateotisraint functiorc(x) at a given
vectorx. See Section 2.4.2 for details.clfavai | abi | ity =1 (see Section 2.2.3), themal _.Cmust be present
and declare@®XTERNAL in the calling program. 1€ _avai | abi | ity = 2, thenGALAHAD_CHECK ver i f y will use
reverse communication to obtain constraint function valigee Section 2.5).

eval _G is anOPTI ONAL user-supplied subroutine whose purpose is to evaluatertitiegit of the objective function
Oxf(x) at a given vectox. See Section 2.4.3 for details. dfavail ability = 1 (see Section 2.2.3), then
eval _Gmust be present and declaf&ITERNAL in the calling program. Ifj_avai | abil ity = 2, thenGALAH
AD_CHECK ver i fy will use reverse communication to obtain gradient valuee Gection 2.5).

eval _J is anOPTI ONAL user-supplied subroutine whose purpose is to evaluateattabihn of the objective function
O f(X) at a given vectox. See Section 2.4.5 for details. Jfavail ability =1 (see Section 2.2.3), then
eval _J must be present and declaf&TERNAL in the calling program. Otherwiseyal _J need not be supplied.

eval _H is anOPTI ONAL user-supplied subroutine whose purpose is to evaluateghsih of the LagrangidyL(X,y)
at a given poin{x,y). See Section 2.4.5 for details. Hfavai | abi | ity = 1 (see Section 2.2.3), themal _H
must be present and declafe&XTERNAL in the calling program. Otherwiseyal _H need not be supplied.

eval _Jv isanCPTI ONAL user-supplied subroutine whose purpose is to evaluatethe of the product of the Jacobian
of the constraint functiofiyc(x) with a given vector. See Section 2.4.7 for details. Jfavai [abi ity =3
(see Section 2.2.3), thaval _Jv must be present and declarfe¥rERNAL in the calling program. Otherwise,
eval _Jv need not be supplied.

eval _Hv is anOPTI ONAL user-supplied subroutine whose purpose is to evaluateathe of the product of the Hessian
of the Lagrangian functioflyL(x,y) with a given vectorv. See Section 2.4.7 for details.Hfavai | abi [ity
= 3 (see Section 2.2.3), themal _Hv must be present and declafIERNAL in the calling program. Otherwise,
eval _Hv need not be supplied.

2.3.3 The termination subroutine

All previously allocated arrays are deallocated as foltows
CALL CHECK_terminate(data, control, inform)

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013) 9

CHECK GALAHAD

dat a is a scalat NTENT(| NOUT) argument of typ&HECK dat a_t ype exactly as folCHECK ver i fy, which must not
have been altereloly the usersince the last call t€HECK i ni ti al i ze (except possiblylat a¥%RC as described
in Section 2.5). On exit, array components will have beertideated.

control is ascalat NTENT(IN) argument of typ€HECK cont r ol _t ype exactly as folCHECK veri fy.

i nf orm is a scalat NTENT(QUT) argument of typ€HECK_i nf or m.t ype exactly as folCHECK veri fy. Only the com-
ponentst at us will be set on exit, and a successful call@dECK _t er i nat e is indicated when this component
st at us has the value 0. For other return valuesbét us see Section 2.6.

2.4 Function and derivative values
2.4.1 The objective function value via internal evaluation

If the control parametefr_avai | ability =1 (see Section 2.2.3), then the argumardl _F must be present when
calling GALAHAD_CHECK veri fy and the user must provide a subroutine of that name to eeathatvalue of the
objective functionf (x). The routine must be specified as

SUBRQUTI NE eval F(status, X, userdata, F)
whose arguments are as follows:

status is a scalafl NTENT(QUT) argument of type defaultNTEGER, that should be set to O if the routine has been
able to evaluate the objective function and to a non-zenaeviiithe evaluation has not been possible.

X is a rank-ond NTENT(| N) array argument of type defalREAL (double precision ifzALAHAD_CHECK_doubl e)
whose components contain the veotor

userdat a is a scalai NTENT(| NOUT) argument of typeNLPT_user dat a_t ype whose components may be used to
communicate user-supplied data to and from the subrowiresF, eval _C, eval _G eval _J eval _H, eval _Jv,
andeval _Hv (see Section 2.2.7).

F is a scalarl NTENT(QUT) argument of type defauREAL (double precision irGALAHAD_CHECK doubl e) that
should be set to the value of the objective functfgr) evaluated at the vectarinput in X.

2.4.2 The constraint function value via internal evaluatiom

If the control parameter_avail ability =1 (see Section 2.2.3), then the argumardl _C must be present when
calling GALAHAD_CHECK veri fy and the user must provide a subroutine of that name to eeathatvalue of the
constraint functiort(x). The routine must be specified as

SUBRQUTI NE eval _C(status, X, userdata, C)
whose arguments are as follows:

status is a scalaf NTENT(QUT) argument of type defaultNTEGER, that should be set to O if the routine has been
able to evaluate the constraint function and to a non-zdrevathe evaluation has not been possible.

X is a rank-ond NTENT(| N) array argument of type defalREAL (double precision ifcALAHAD_CHECK_doubl e)
whose components contain the vector

userdat a is a scalai NTENT(| NOUT) argument of typeNLPT_user dat a_t ype whose components may be used to
communicate user-supplied data to and from the subrowiresF, eval _C, eval _G eval _J eval _H, eval _Jv,
andeval _Hv (see Section 2.2.7).

C is a rank-oné NTENT(OUT) argument of type defauREAL (double precision irftALAHAD_CHECK _doubl e) that
should be set to the value of the constraint functipg evaluated at the vectarinput in X.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

10 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

2.4.3 Gradient values via internal evaluation

If the control parameteg_avail ability =1 (see Section 2.2.3), then the argumardl _G must be present when
calling GALAHAD_CHECK veri fy and the user must provide a subroutine of that name to eeathatvalue of the
gradient the objective functionx f (x). The routine must be specified as

SUBRQUTI NE eval @ status, X, userdata, G)
whose arguments are as follows:

status is a scalaf NTENT(QUT) argument of type defaultNTEGER that should be set to 0 if the routine has been able
to evaluate the gradient of the objective function and toranero value if the evaluation has not been possible.

X is a rank-oné NTENT(| N) array argument of type defalREAL (double precision ifGALAHAD_CHECK doubl e)
whose components contain the vector

userdata is a scalad NTENT(| NOUT) argument of typeNLPT_user dat a_t ype whose components may be used to
communicate user-supplied data to and from the subrowiresF, eval _C, eval _G, eval _J eval _H, eval _Jv,
andeval _Hv (see Section 2.2.7).

G is a rank-ond NTENT(QUT) argument of type defauREAL (double precision irfGALAHAD_CHECK doubl), whose
components should be set to the values of the gradient oftfjeetive functionCy f (x) evaluated at the vector
X inputinX.

2.4.4 Jacobian values via internal evaluation

If the control parametef_avail ability =1 (see Section 2.2.3), then the argumardl _J must be present when
calling GALAHAD_CHECK veri fy and the user must provide a subroutine of that name to eeatbatvalues of the
Jacobian of the constraint functi@iyc(x). The routine must be specified as

SUBRQUTI NE eval J(status, X, userdata, Jval)
whose arguments are as follows:

status is a scalal NTENT(QUT) argument of type defaultNTEGER that should be set to O if the routine has been
able to evaluate the Jacobian of the constraint functiontaranon-zero value if the evaluation has not been
possible.

X is a rank-oné NTENT(| N) array argument of type defalREAL (double precision ifGALAHAD_CHECK doubl e)
whose components contain the vector

userdata is a scalad NTENT(| NOUT) argument of typeNLPT_user dat a_t ype whose components may be used to
communicate user-supplied data to and from the subrowiresF, eval _C, eval _G eval _J eval _H, eval _Jv,
andeval _Hv (see Section 2.2.7).

Jval is a scalat NTENT(QUT) argument of type defauREAL (double precision ifsALAHAD_CHECK doubl e), whose
components should be set to the values of the Jacobian obtistraint functiorilxc(x) evaluated at the vector
x inputinX. The values should be input in the same order as that in whihrray indices were given it p%J.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013) 11

CHECK GALAHAD

2.4.5 Hessian values via internal evaluation

If the control parameted avai | ability =1 (see Section 2.2.3), then the argumardl _H must be present when
calling GALAHAD_CHECK ver i fy and the user must provide a subroutine of that name to eeathatvalues of the
Hessian of the LagrangidnL(x,y). The routine must be specified as

SUBRQUTI NE eval _H(status, X, Y, userdata, Hval)
whose arguments are as follows:

status is a scalafl NTENT(QUT) argument of type defaultNTEGER, that should be set to O if the routine has been
able to evaluate the Hessian of the Lagrangian and to a nanvakie if the evaluation has not been possible.

X is a rank-ond NTENT(| N) array argument of type defalREAL (double precision ifcALAHAD_CHECK_doubl e)
whose components contain the vector

Y is a rank-oné NTENT(| N) array argument of type defalREAL (double precision ifGALAHAD_CHECK doubl e)
whose components contain the dual vegtor

userdat a is a scalad NTENT(| NOUT) argument of typeNLPT_user dat a_t ype whose components may be used to
communicate user-supplied data to and from the subrowiresF, eval _C, eval _G eval _J eval _H, eval _Jv,
andeval _Hv (see Section 2.2.7).

Hval is a scalat NTENT(QUT) argument of type defauREAL (double precision irftALAHAD_CHECK doubl), whose
components should be set to the values of the Hessian of tirahgiari.L (X,y) evaluated at the vectéx, y)
input in X andY. The values should be input in the same order as that in whiglatray indices were given in
nl po%.

2.4.6 Jacobian-vector products via internal evaluation

If the control parametel_avai | abil ity = 3 (see Section 2.2.3), then the argumardl _Jv must be present when
calling GALAHAD_CHECK veri fy and the user must provide a subroutine of that name to congatkicts of the

Jacobian of the constraint function (and its transposeh@formu + Oxc(x)v andu + Oxc(x) Tv. The routine must

be specified as

SUBRQUTI NE eval Jv(status, userdata, transpose, U V, X)
whose arguments are as follows:

status is a scalat NTENT(QUT) argument of type defaultNTEGER that should be set to 0 if the routine has been able
to perform the required calculation (seeanspose below) and to a non-zero value if the computation has not
been possible.

userdata is a scalaid NTENT(| NOUT) argument of typeNLPT_user dat a_t ype whose components may be used to
communicate user-supplied data to and from the subrowiresF, eval _C, eval _G eval _J eval _H, eval _Jv,
andeval _Hv (see Section 2.2.7).

transpose isascalat NTENT(I N) argument of type defaultOd CAL. If t ranspose =. FALSE. , then the user should
evaluate the sum + Cyc(x)v. If transpose = . TRUE. , then the user should evaluate the sw# Cyc(x)Tv.

U is a rank-ond NTENT(| NOUT) array argument of type defauREAL (double precision irGALAHAD CHECK -
doubl e) whose components on input contain the veatand on output contains either the sur Cxc(X)v or
u+ Oxe(x)Tv depending on the value of anspose given above.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

12 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

v is a rank-oné NTENT(| N) array argument of type defalREAL (double precision ifcALAHAD_CHECK doubl e)
whose components contain the vector

X is a rank-oné NTENT(| N) array argument of type defalREAL (double precision ifGALAHAD_CHECK doubl e)
whose components contain the vector

2.4.7 Hessian-vector products via internal evaluation

If the control parameteH avail ability = 3 (see Section 2.2.3), then the argumewdl _Hy must be present
when calling GALAHAD_CHECK_veri fy and the user must provide a subroutine of that name to eeathat sum
u + OxL(x,y)v involving the product of the Hessian of the Lagrangiagl(x,y). The routine must be specified
as

SUBRQUTI NE eval Hv(status, userdata, U V, X Y)
whose arguments are as follows:

status is a scalaf NTENT(QUT) argument of type defaultNTEGER that should be set to 0 if the routine has been able
to perform the required calculation and to a non-zero vdltheeicomputation has not been possible.

userdata is a scalad NTENT(| NOUT) argument of typeNLPT_user dat a_t ype whose components may be used to
communicate user-supplied data to and from the subrowiresF, eval _C, eval _G eval _J eval _H, eval _Jv,
andeval _Hv (see Section 2.2.7).

U is a rank-ond NTENT(| NOUT) array argument of type defauREAL (double precision imGALAHAD_CHECK_-
doubl e) whose components on input contain the veatand on output the sumn+ OyL (X, y)v.

v is a rank-oné NTENT(| N) array argument of type defalREAL (double precision ifGALAHAD_CHECK doubl e)
whose components contain the veotor

X is a rank-oné NTENT(| N) array argument of type defalREAL (double precision ifGALAHAD_CHECK doubl e)
whose components contain the vector

Y is a rank-oné NTENT(| N) array argument of type defalREAL (double precision ifGALAHAD_CHECK doubl e)
whose components contain the veator

2.5 Reverse Communication Information

A positive value ofi nf or n¥st at us on exit from CHECK_veri fy indicates thaGALAHAD_CHECK veri fy is seeking
further information—this will happen if the user has chosen to evaluate function or derivative values internally
(see Sections 2.2.3 and 2.4). The user should compute thieeddnformation and re-ent@\LAHAD_CHECK veri fy
with all arguments (except those specifically mentionedwglinchanged.

Possible values afnf or ni#st at us and the information required are

2. The user should compute the objective function vél(e at the poini indicated indat a¥RC%X. The required
value should be set fat a9%RC%-. If the user is unable to evaluatéx)—for instance, if the function is undefined
atx—the user need not séat a%=C%-, but should then sétf or n¥st at us to any negative value. Otherwise,
the value of nf or nP6t at us should remain unchanged.

3. The user should compute the constraint function va(ug at the poini indicated indat a%RC%. The required
value should be set itat a%RCUC. If the user is unable to evaluatex)—for instance, if the function is undefined
atx—the user need not séat a%RCUC, but should then sétf or n¥/st at us to any negative value. Otherwise,
the value of nf or nP6t at us should remain unchanged.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013) 13

CHECK GALAHAD

4. The user should compute the gradient of the objective fanddi f (x) at the pointx indicated indat a%RC%X.
The value of theé-th component of the gradient should be sedlana%RC%3i) fori=1,...,n. If the useris
unable to evaluate a componentff (x)—for instance, if a component of the gradient is undefined-athe
user need not sefat a¥RCYG, but should then seinf or nPst at us to a negative value. Otherwise, the value of
i nf or n¥fst at us should remain unchanged.

5. The user should compute the Jacobian of the constraintifumigc(x) at the poinix indicated indat a¥%RC%X.
Thel-th component of the Jacobian stored according to the sclse to inpunl p% (see Section 2.2.2)
should be set imlat a%C%val (1) forl =1,..., nl p%d%e. If the user is unable to evaluate a component of
Oxc(x)—for instance, if a component of the Jacobian is undefined-ghe user need not seat a¥RC%val ,
but should then sedtnf or ¥t at us to a negative number. Otherwise, the valud of or n¥%st at us should
remain unchanged.

6. The user should compute the value- Oxc(x)v, which requires a product of the Jacobian of the constraint
functionyc(x) at the poini with the vectow; the vector, u, andv are contained idat a%RC%, dat a%RCA,
anddat a¥RCW/, respectively. On exit, the resulting vectos Oxc(x)v should be stored idat a%RC%J. If the
user is unable to evaluate the product—for instance, if apmrant of the Jacobian is undefinedxatthe
user need not sefat a%RCJ, but should then seétnf or n¥st at us to a negative value. Otherwise, the value of
i nf or n¥st at us should remain unchanged.

7. The user should compute the value- Oxc(x) v, which requires a product of the transpose of the Jacobian
of the constraint functiorilyc(x) at the pointx with the vectorv; the vectorsx, u, andv are contained in
dat a%RCY%X, dat a%RCJ, anddat a%RCW/, respectively. On exit, the resulting vector- Cyc(x) v should be
stored indat a%RC%J. If the user is unable to evaluate the product—for instaifieéecomponent of the Jacobian
is undefined ak—the user need not sdat a¥RC%J, but should then sétnf or n¥st at us to a negative value.
Otherwise, the value ofnf or nst at us should remain unchanged.

8. The user should compute the Hessian of the Lagrangigh(x,y) at the point(x,y) indicated indat a%RC%X
anddat a%RC%. Thel-th component of the Hessian stored according to the scheet:to inpuhl p% (see
Section 2.2.2) should be set dat a%RC%val (1) for | =1,..., nl p%Pne. If the user is unable to evalu-
ate a component dilyL(x,y)—for instance, if a component of the Hessian is undefinek at)—the user
need not sedat a¥RC%val , but should then setnf or n¥st at us to a negative value. Otherwise, the value of
i nf or n¥fst at us should remain unchanged.

9. The user should compute the value OyL(x,y)v, which requires a product of the Hessian of the Lagrangian
OxL(x,y) at the poin{x,y) with the vectow; the vectors, y, u, andv are contained idat a%RC%X, dat a¥RCuY,
dat a%RC%J, anddat a¥RCW/, respectively. On exit, the resulting vector Oyl (X,y)v should be stored in
dat a%CU. If the user is unable to evaluate the product—for instaifce,component of the Hessian is un-
defined at(x,y)—the user need not sett a%RC%J, but should then sétnf or n¥st at us to a negative value.
Otherwise, the value ofnf or n¥st at us should remain unchanged.

2.6 Warning and error messages

A negative value of nf or nifst at us on exit from CHECK veri fy or CHECK_t er mi nat e indicates that an error has
occurred. No further calls should be made until the errofdesEn corrected. Possible values are:

-1. Anallocation error occurred. A message indicating theraffeg array is written on undont r ol %er r or, and the
returned allocation status and a string containing the nainttee offending array are held imf or n#al | oc_-
stat us andi nf or n¥bad-al | oc, respectively.

-2. A deallocation error occurred. A message indicating theraffng array is written on unéont r ol %error and
the returned allocation status and a string containinganeaof the offending array are held inf or n¥al | oc_-
stat us andi nf or nPbad_al | oc, respectively.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

14 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

- 3. Either one of the restrictions! p% > 0 or nl p%n > 0 is violated, or the requirement thalttp% _t ype and
nl p%ltype contain a relevant stringDENSE' , ' COORDI NATE' , ' SPARSE_BY_ROAS' , ' SPARSE BY_COLUWNS'
or’ DI AGONAL’ is not satisfied.

-50. The user has calleBHECK veri fy with i nf or n¥st at us < 0, which indicates that the user was not able to
perform a requested computation needed during reverse ooioation.

-51. The user has calle@HECK veri fy with i nf or n¥st at us = 0, which should never happen. The user should
only seti nf or n¥st at us in two situations:i nf or nist at us = 1 prior to the initial call toCHECK verify, and
i nfornist at us < 0 when reverse communication is being used and the user dautwaperform the required
computation as indicated by the value of or n¥st at us on return fromCHECK veri fy (see Section 2.5). The
user should not changef or nifst at us for any other reason.

-55. The user hasinputan invalid value for at least one of therobparameters_avai | ability, c_availability,
g-avail ability, J_availability, orHavail ability as described in Section 2.2.3.

-56. Based on the values of the control parameftezgai | abi | i ty, c_availability,g.availability,J availa-
bility,andHavail ability (see Section 2.2.3), at least one optional dummy subroigtiméssing in the call
to CHECK veri fy.

-57. At least one component af p%_| ornl p%X_u is inappropriate (see Section 2.2.2).

-58. A user supplied function (see Sections 2.4.1-2.4.7) retlirnf or n¥%st at us # 0, implying that the function
computation could not be performed at the required point.

2.7 Further features

In this section, we describe an alternative means of settimgrol parameters—that is components of the variable
control of type CHECK control _t ype (see Section 2.2.3)—by reading an appropriate data spaficfile using
the subroutin€€HECK r ead_specfi | e. This facility is useful as it allows a user to char@=CK control parameters
without editing and recompiling programs that c2HECK.

A specification file, or specfile, is a data file containing a bemof "specification commands”. Each command
occurs on a separate line, and comprises a "keyword”, wiialstring (in a close-to-natural language) used to identify
a control parameter, and an (optional) "value”, which defitree value to be assigned to the given control parameter.
All keywords and values are case insensitive, keywords neagrbceded by one or more blanks but values must not
contain blanks, and each value must be separated from itgokdypy at least one blank. Values must not contain more
than 30 characters, and each line of the specfile is limite3Dtoharacters, including the blanks separating keyword
and value.

The portion of the specification file used BYECK r ead_specfi | e must start with a BEG N CHECK” command
and end with anEND’ command. The syntax of the specfile is thus defined as follows

(.. lines ignored by CHECK read_specfile ..)
BEG N CHECK
keywor d val ue
keywor d val ue
END
(.. lines ignored by CHECK read_specfile ..)

where keyword and value are two strings separated by (&) leas blank. The BEG N CHECK” and “END" delimiter
command lines may contain additional (trailing) stringd@m as such strings are separated by one or more blanks,
so that lines such as

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013) 15

CHECK GALAHAD

BEA N CHECK SPECI FI CATI ON
and
END CHECK SPECI FI CATI ON

are acceptable. Furthermore, between BES'N CHECK” and “END’ delimiters, specification commands may occur
in any order. Blank lines and lines whose first non-blank abtar is! or* are ignored. The content of a line after a
or* character is also ignored (as is ther * character itself). This provides an easy manner to "commetitsome
specification commands, or to comment specific values odicecbntrol parameters.

The value of a control parameters may be of three differgregynamely integer, logical, or real. Integer and real
values may be expressed in any relevant Fortran integer@atihflj-point formats (respectively). Permitted values fo
logical parameters areX’, " TRUE”, ”. TRUE. ", " T", " YES", " Y", or "OFF", "NO", " N’, " FALSE", ”. FALSE. " and "F".
Empty values are also allowed for logical control paranst@nd are interpreted asRUE".

The specification file must be open for input whetiECK_r ead_specfi |l e is called, and the associated device
number passed to the routine in device (see below). Notettbatorresponding file iBEW NDed, which makes it
possible to combine the specifications for more than onerprofjoutine. For the same reason, the file is not closed
by CHECK r ead_specfi | e.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL CHECK read_specfile(control, device)

control is a scalarl NTENT(| NOUT) argument of typeCHECK cont rol _t ype (see Section 2.2.3). Default values
should have already been set, perhaps by calllHeCK i nitialize. On exit, individual components of
control may have been changed according to the commands found ip¢lcéle. Specfile commands and
the components (see Section 2.2.3} @it r ol that they affect are given in Table 2.1.

command component otont r ol value type
error-printout-device | %rror integer
printout-device Y%out integer
print-Ievel Y%rint _|evel integer
verification-Ievel Yerify_level integer
f-availability % _availability integer
c-availability Y% _availability integer
g-availability Y%availability integer
J-availability % _availability integer
Havailability Y%lavailability integer
check- gr adi ent Y%checkG logical
check- Jacobi an Y%heckJ logical
check- Hessi an Y%heckH logical
deal | ocate-error-fatal | %leallocate_error_fatal | logical

Table 2.1: Specfile commands and associated componetustafol .

devi ce is a scalat NTENT(| N) argument of type defaultNTEGER, that must be set to the unit number on which the
specfile has been opened.dHvi ce is not opengontrol will not be altered and execution will continue, but
an error message will be printed on ucdnt r ol %err or .

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

16 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

2.8 Information printed

If control %rint_l evel is positive, information about the derivative verificatiaiil be printed on unitcont r ol -
Y%ut , providedcontrol %ut > 0. If control %rint_level =1, a basic summary of the derivative checking is
produced. Ifcontrol %rint_l evel = 2, then in addition to the above there is detailed output efdarivative
verification, control parameters are printed, and basicimdata is produced. I€ontrol %rint _| evel =3, then

in addition to the above, full matrix data is printed. Figadlont r ol %pri nt _| evel > 4 is used for debugging and in
addition to the above also prints private data used duriag#hification process.

3 GENERAL INFORMATION

Use of common: None.
Workspace: Provided automatically by the module.
Other routines called directly: None.

Other modules used directly: CHECK veri fy and CHECK_t er mi nat e call the GALAHAD package<GALAHAD_MOP,
andGALAHAD_SPACE.

Input/output: Output is under control of the argumentsit r ol %error, cont r ol %out andcontrol %rint _| evel .
Restrictions: nl p% > 0 andnl p%n> 0.

Portability: 1SO Fortran 95 + TR 15581 or Fortran 2003. The package isdhsage.

4 METHOD

Finite difference approximations are used to numericaligrify” requested derivatives. Wferify_l evel =1, we
perform a “cheap” check of the gradient of the objective fiorcby comparing f(x) — f(x+as))/a with Oxf(x)T's

for some appropriately chosen vecwand scalar < a <« 1. Similarly, for the Jacobian of the constraints and
the Hessian of the Lagrangian, we compg@e) — c(x + as))/a to Oxc(x)s and (OxL(x,y) — OxL(x+ as,y))/a to
OxL(X,Yy)s, respectively. Iveri fy_l evel =2, we perform an “expensive” verification of the gradientraf bbjective
function by comparing f(x) — f(x+ag))/a with [Oxf(x)]i for i =1,...,n, whereg is theith coordinate vector.
Similarly, for the Jacobian of the constraints and the Hesef the Lagrangian, we compd(fe(x) — c(x+ aej))]i /a

to [Oxc(x)]ij and[(OxL(X,y) — OxL(x + aej,y))]i/a to [OxL(X,Y)]ij, respectively.

5 EXAMPLES OF USE

Suppose we wish to perform an “expensive” check of the diéves associated with the objective functib(x) =
x1 +X3/3 and the constraint functiar(x) = (x1 + X3 + X3 + X3x3, —x3) at the pointx = (4,3,2) andy = (2,3), with
bounds<' = (-5, -5, —5) andx" = (5,5,5). We may use the following code:

I THI'S VERSI ON: GALAHAD 2.4 - 4/02/2008 AT 09: 00 GWI.
PROGRAM GALAHAD_check_exanpl e
USE GALAHAD SMT_double ! doubl e precision version
USE GALAHAD NLPT double ! doubl e precision version
USE GALAHAD MOP_double ! doubl e precision version
USE GALAHAD CHECK doubl e ! doubl e precision version
I MPLICI' T NONE
integer, paraneter :: wp = KIND(1.0D+0) ! Define the working precision
type(NLPT_problemtype) :: nlp

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013) 17

CHECK GALAHAD

type(NLPT userdata_type) :: userdata
type(CHECK data_type) :: data

type(CHECK control _type) :: control
type(CHECK_ informtype) :: inform

integer :: stat, Jne, Hie, m n
real (kind = wp), parameter :: one = 1.0_wp, two = 2.0_wp, three = 3.0_wp
real (kind = wp), parameter :: four = 4.0_wp, five = 5.0_wp
external funF, funC, funG funJ, funH
nl p%m 2; nlp%wm =3; m=nlp¥n ;o n = nlpW%h
nlp%n=2; nlpW% =3 ; nlpW%e =4 ; JIne = nlp%yne
nlp%%n =3 ; nlp%Phm =3 ; nlp%Pwne =3 ; Hre = nl p%UPine
call SMI_put(nlp%%d, 'Toy 2x3 matrix’, stat);
cal | SMI_put(nl p%% ype, ' COORDI NATE , stat)
call SMI_put(nlp%¥6d, 'Toy 3x3 hessian matrix', stat);
cal |l SMI_put(nl p%¥4ype, 'COORDI NATE', stat)
allocate(nlp%3(n), nlp¥(m, nlp¥(n), nlp%l(n), nlp%u(n), nlp%(m)
al l ocate(nl p%d% ow(Jne), nl p%%ol (Jne), nlp%%al (Jne))
al l ocat e(nl p%% ow Hne), nl p%Peol (Hne), nl p%Pval (Hne))
nlp@%ow= (/ 1, 1, 1, 2/7) ; nlp%%ol (I 1, 2, 3 21)
nlp%%ow = (/ 2, 3, 31/) 7 nl p%Peol (1 2, 2, 31)
nlp¥ = (/ four, three, two /) ; nlp%l -five ; nlp¥ u = five; nlpW = (/ two, three /)
call CHECK initialize(control) ; control %rint_level =3
infornPstatus = 1
call CHECK verify(nlp, data, control, inform userdata, funF, funC, funG funJ, funH)
call CHECK terminate(data, control, inform)
END PROGRAM GALAHAD check_exanpl e

SUBROUTI NE funF(status, X, userdata, F)
USE GALAHAD NLPT doubl e
I NTEGER, PARAMETER :: wp = KIND(1.0D+0)
I NTEGER, I NTENT(QUT) :: status
REAL (kind = wp), INTENT(IN), DIMENSION(:) :: X
REAL (kind = wp), INTENT(QUT) :: F
TYPE (NLPT_userdata_type), INTENT(INOUT) :: userdata
F=X1) + X2)**3/ 3.0_wp
status = 0
RETURN
END SUBRCUTI NE f unF
SUBROUTI NE funC(status, X, userdata, C
USE GALAHAD NLPT doubl e
| NTEGER, PARAMETER :: wp = KIND(1.0D+0)
I NTEGER, I NTENT(QUT) :: status
REAL (kind = wp), INTENT(IN), DIMENSION(:) :: X
REAL (kind = wp), DIMENSION(:), INTENT(QUT) :: C
TYPE (NLPT_userdata_type), INTENT(INOUT) :: userdata
C1) = X(1) + X(2)**2 + X(3)**3 + X(3)*X(2)**2
C(2) = -X(2)**4
status = 0
RETURN
END SUBRCQUTI NE funC
SUBROUTI NE fun@status, X, userdata, G
USE GALAHAD NLPT doubl e
I NTEGER, PARAMETER :: wp = KIND(1.0D+0)
I NTEGER, I NTENT(QUT) :: status
REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

18 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

EAL (KIND = wp), DIMENSION(:), INTENT(QUT) :: G
YPE (NLPT userdata_type), INTENT(INOUT) :: userdata
):
):

G(l -0_wp
A2) = X(2)**2
G3) =0.0_w
status = 0
RETURN

END SUBROUTI NE f unG
SUBRQUTI NE funJ(status, X, userdata, Jval)
USE GALAHAD NLPT doubl e
| NTEGER, PARAMETER :: wp = KIND(1.0D+0)
I NTEGER, I NTENT(OUT) :: status
REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: Jval
TYPE (NLPT_userdata_type), INTENT(INOUT) :: userdata
Jval (1) = 1.0_wp

Jval (2) =2.0_w * X(2) * (1.0_wp + X(3))

Jval (3) = 3.0_wp * X(3)**2 + X(2)**2

Jval (4) = -4.0_wp * X(2)**3

status = 0

RETURN

END SUBROUTI NE funJ
SUBROUTI NE funH(status, X, Y, userdata, Hval)
USE GALAHAD NLPT doubl e
I NTEGER, PARAMETER :: wp = KIND(1.0D+0)
I NTEGER, I NTENT(OUT) :: status
REAL (kind = wp), DIMENSION(:), INTENT(IN) :: X

REAL(kind = wp), DIMENSION(:), INTENT(IN) :: Y
L (kind = wp), DIMENSION(:), INTENT(OUT) ::Hval
TYPE(NLPT_userdata_type), INTENT(INOUT) :: userdata
Hval (1) = 2.0_wp * (X(2) - Y(1) - Y(1)*X(3) + 6.0_wp*Y(2)*X(2)**2)
Hval (2) = -2.0_wp * Y(1) * X(2)
Hval (3) = -6.0_wp * Y(1) * X(3)
status = 0
RETURN

END SUBROUTI NE f unH

The code produces the following output:

EXPENSI VE VERI FI CATI ON OF THE GRADI ENT (X)

Conponent (04 Di fference Val ue Error

1) (0.4 9. 999999891E- 01 1. 000000000E+00 5. 437063829E- 09
q 2) (04 9. 000000276E+00 9. 000000000E+00 2.755274031E- 08
3) K 0. 000000000E+00 0. 000000000E+00 0. 000000000E+00

EXPENSI VE VERI FI CATI ON OF THE JACOBI AN C(X)

Conponent (04 Di fference Val ue Error

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013)

19

CHECK

GALAHAD

J(1, 1)
J(2, 1)
J(1, 2)
J(2, 2)
J(1, 3)
J(2, 3)
Conponent
HO L 1)
H 2 1)
HO 3, 1)
HO L 2)
H 2 2)
H 3, 2)
HO L 3)
H 2 3)
HO 3, 3)

RIAIRARKIK

EXPENSI VE VERI FI CATI ON OF

TErrrrrran

9. 999999891E- 01
0. 000000000E+00
1. 800000025E+01
- 1. 080000049E+02
2.100000052E+01
0. 000000000E+00

D fference
0. 000000000E+00
0. 000000000E+00
0. 000000000E+00
0. 000000000E+00
3. 180000098E+02
-1.200000017E+01
0. 000000000E+00
-1.200000017E+01
2.400000049E+01

. 000000000E+00
. 000000000E+00
. 800000000E+01

- 1. 080000000E+02

ON PR PP O

THE HESSI AN H(X, Y)

. 100000000E+01
. 000000000E+00

. 000000000E+00
. 000000000E+00
. 000000000E+00
. 000000000E+00
. 180000000E+02

-1. 200000000E+01

. 000000000E+00

-1. 200000000E+01

. 400000000E+01

OoON B~ OOl

. 437063829E- 09
. 000000000E+00
. 328100896E- 08
. 540609864E- 08
. 356511020E- 08
. 000000000E+00

SUMVARY

(Verify : Expensive)

THE GRADI ENT OF THE OBJECTIVE FUNCTION IS ----

THE JACOBI AN OF THE CONSTRAINT FUNCTION IS ---

THE HESSI AN OF THE LAGRANG AN FUNCTION IS ----

. 000000000E+00
. 000000000E+00
. 000000000E+00
. 000000000E+00
. 083032415E- 08
. 294047027E- 08
. 000000000E+00
. 294047027E- 08
. 943240183E- 08

checkG= T f_available = 1 deall_error_fatal = F
checkJ = T c_available = 1 print_|evel = 3
checkH= T g_available = 1 verify_level = 2
error = 6 J available = 1 out = 6
H available = 1

| MATRI X DATA

J% ype --- COORDI NATE

J%d - Toy 2x3 matrix

H% ype --- COORDI NATE

H% d - Toy 3x3 hessian matrix

m = 2

n = 3

J% ow JY%col Jwval

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

20 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

1 1 1. 0000000000E+00
1 2 1.8000000571E+01
1 3 2.1000001142E+01
2 2 -1.0800000000E+02
H% ow H¥eol Haval
2 2 3. 1800000000E+02
3 2 -1.2000000000E+01
3 3 -2.4000000000E+01

EXIT STATUS : 0

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD CHECK (May 8, 2013) 21

