
GALAHAD NLPT
USER DOCUMENTATION GALAHAD Optimization Library version 2.5

1 SUMMARY

This package defines a derived type capable of supporting thestorage of a variety of smoothnonlinear programming
problemsof the form

min f(x)

subject to the general constraints
cl
≤ c(x)≤ cu,

and
xl

≤ x ≤ xu,

wheref is a smooth “objective function”, wherec(x) is a smooth function from IRn into IRm and where inequalities are
understood componentwise. The vectorscl ≤ cu andxl ≤ xu arem- andn-dimensional, respectively, and may contain
components equal to minus or plus infinity. An important function associated with the problem is its Lagrangian

L(x,y,z) = f(x)− yT c(x)− zT x

wherey belongs to IRm andz belongs to IRn. The solution of such problem may require the storage of the objective
function’s gradient

g(x) = ∇xf(x),

then× n symmetric objective function’s Hessian

H f (x) = ∇xxf(x)

them× n constraints’ Jacobian whosei-th row is the gradient of thei-th constraint:

eT
i J(x) = [∇xci(x)]T ,

the gradient of the Lagrangian with respect tox,

gL(x,y,z) = ∇xL(x,y,z)

and of the Lagrangian’s Hessian with respect tox

HL(x,y,z) = ∇xxL(x,y,z).

Note that this last matrix is equal to the Hessian of the objective function when the problem is unconstrained (m = 0),
which autorizes us to use the same symbolH for both cases.

Full advantage can be taken of any zero coefficients in the matricesH or J.

The module also contains subroutines that are designed for printing parts of the problem data, and for matrix storage
scheme conversions.

ATTRIBUTES — Versions: GALAHAD NLPT single, GALAHAD NLPT double, Calls: GALAHAD TOOLS. Date: May
2003. Origin: N. I. M. Gould, Rutherford Appleton Laboratory, and Ph. L. Toint, University of Namur, Belgium.
Language:Fortran 95 + TR 15581 or Fortran 2003.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD NLPT (May 8, 2013) 1

NLPT GALAHAD

2 HOW TO USE THE PACKAGE

Access to the package requires aUSE statement such as

Single precision version

USE GALAHAD NLPT single

Double precision version

USE GALAHAD NLPT double

If it is required to use both modules at the same time, the derived typeNLPT problem type, (Section 2.3) must be
renamed on one of theUSE statements.

2.1 Matrix storage formats

Both the Hessian matrixH and the JacobianJ may be stored in one of three input formats (the format for thetwo
matrices being possibly different).

2.1.1 Dense storage format

The matrixJ is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensionalarray. Componentn∗ (i−1)+ j of the storage arrayJ val
will hold the valueJi j for i = 1, . . . ,m, j = 1, . . . ,n. SinceH is symmetric, only the lower triangular part (that is the
part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component
i∗ (i−1)/2+ j of the storage arrayH val will hold the valuehi j (and, by symmetry,h ji) for 1≤ j ≤ i ≤ n.

If this storage scheme is used,J type and/orH type must be set the value of the symbolGALAHAD DENSE.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For thel-th entry ofJ, its row indexi, column indexj and value
Ji j are stored in thel-th components of the integer arraysJ row, J col and real arrayJ val. The order is unimportant,
but the total number of entriesJ ne is also required. The same scheme is applicable toH (thus requiring integer arrays
H row, H col, a real arrayH val and an integer valueH ne), except that only the entries in the lower triangle need be
stored.

If this storage scheme is used,J type and/orH type must be set the value of the symbolGALAHAD COORDINATE.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time theyare ordered so that those in rowi appear directly before
those in rowi+1. For thei-th row ofJ, thei-th component of a integer arrayJ ptr holds the position of the first entry
in this row, whileJ ptr (m+1) holds the total number of entries plus one. The column indices j and valuesJi j of the
entries in thei-th row are stored in componentsl = J ptr(i), . . . ,J ptr (i+1)−1 of the integer arrayJ col, and real
arrayJ val, respectively. The same scheme is applicable toH (thus requiring integer arraysH ptr, H col, and a real
arrayH val), except that only the entries in the lower triangle need be stored. The values ofJ ne andH ne are not
mandatory, since they can be recovered from

J ne= J ptr(n+1)−1 and H ne= H ptr(n+1)−1

For sparse matrices, this scheme almost always requires less storage than its predecessor.

If this storage scheme is used,J type and/orH type must be set the value of the symbolGALAHAD SPARSE BY ROWS.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

2 NLPT (May 8, 2013) GALAHAD

GALAHAD NLPT

2.2 Optimality conditions

The solutionx necessarily satisfies the primal first-order optimality conditions

cl
≤ c(x)≤ cu, and xl

≤ x ≤ xu,

the dual first-order optimality conditions
g(x) = J(x)T y+ z

where
y = yl + yu, z= zl + zu yl

≥ 0, yu
≤ 0, zl

≥ 0 and zu
≤ 0,

and the complementary slackness conditions

(c(x)− cl)T yl = 0, (c(x)− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the vectorsy andz are known as the Lagrange multipliers for the general constraints, and the dual variables
for the bounds, respectively, and where the vector inequalities hold componentwise. The dual first-order optimality
condition is equivalent to the condition thatgL(x,y,z) = 0.

2.3 The derived data type

A single derived data type,NLPT problem type, is accessible from the package. It is intended that, for anyparticular
application, only those components which are needed will beset. The components are:

pname is a scalar variable of type defaultCHARACTER(LEN = 10), that holds the problem’s name.

n is a scalar variable of type defaultINTEGER, that holds the number of optimization variables,n.

vnames is a rank-one allocatable array of dimensionn and typeCHARACTER(LEN = 10) that holds the names of
the problem’s variables. Thej-th component ofvnames, j = 1, . . . ,n, contains the name ofx j.

x is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the valuesx of the optimization variables. Thej-th component ofx, j = 1, . . . ,n, contains
x j.

x l is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the vector of lower boundsxl on the variables. Thej-th component ofx l, j = 1, . . . ,n,
containsxl

j. Infinite bounds are allowed by setting the corresponding components ofx l to any value smaller
than-infinity.

x u is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the vector of upper boundsxu on the variables. Thej-th component ofx u, j = 1, . . . ,n,
containsxu

j . Infinite bounds are allowed by setting the corresponding components ofX u to any value larger
than thatinfinity.

z is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the valuesz of estimates of the dual variables corresponding to the simple bound constraints
(see Section 2.2). Thej-th component ofz, j = 1, . . . ,n, containsz j.

x status is a rank-one allocatable array of dimensionn and type defaultINTEGER, that holds the status of the
problem’s variables corresponding to the presence of theirbounds. Thej-th component ofx status, j =
1, . . . ,n, contains the status ofx j. Typical values areGALAHAD FREE, GALAHAD LOWER, GALAHAD UPPER,
GALAHAD RANGE, GALAHAD FIXED, GALAHAD STRUCTURAL, GALAHAD ELIMINATED, GALAHAD ACTIVE, GALA-

HAD INACTIVE or GALAHAD UNDEFINED.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD NLPT (May 8, 2013) 3

NLPT GALAHAD

f is a scalar variable of type defaultREAL (double precision inGALAHAD NLPT double), that holds the current
value of the objective function.

g is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the gradientg of of the objective function. Thej-th component ofg, j = 1, . . . ,n, contains
gj.

H type is a scalar variable of type defaultINTEGER, that specifies the type of storage used for the lower triangle of the
objective function’s or Lagrangian’s HessianH Possible values areGALAHAD DENSE, GALAHAD COORDINATE

or GALAHAD SPARSE BY ROWS.

H ne is a scalar variable of type defaultINTEGER, that holds the number of non-zero entries in the lower triangle of
the objective function’s or Lagrangian’s HessianH.

H val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD NLPT double), that holds
the values of the entries of thelower triangular part of the Hessian matrixH in any of the storage schemes
discussed in Section 2.1.

H row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices of thelower triangular part
of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other
two schemes.

H col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices of thelower tri-
angular part ofH in either the sparse co-ordinate (see Section 2.1.2), or thesparse row-wise (see Section 2.1.3)
storage scheme. It need not be allocated when the dense storage scheme is used.

H ptr is a rank-one allocatable array of dimensionn+1 and type defaultINTEGER, that holds the starting position
of each row of thelower triangular part of H, as well as the total number of entries plus one, in the sparse
row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

m is a scalar variable of type defaultINTEGER, that holds the number of general linear constraints,m.

c is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the valuesc(x) of the constraints. Thei-th component ofc, i = 1, . . . ,m, containsci(x).

c l is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the vector of lower boundscl on the general constraints. Thei-th component ofc l,
i = 1, . . . ,m, containscl

i . Infinite bounds are allowed by setting the corresponding components ofc l to any
value smaller than-infinity.

c u is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the vector of upper boundscu on the general constraints. Thei-th component ofc u,
i = 1, . . . ,m, containscu

i . Infinite bounds are allowed by setting the corresponding components ofc u to any
value larger thaninfinity.

equation is a rank-one allocatable array of dimensionm and type defaultLOGICAL, that specifies if each constraint is
an equality or an inequality. Thei-th component ofequation is .TRUE. iff the i-th constraint is an equality, i.e.
iff cl

i = cu
i .

linear is a rank-one allocatable array of dimensionm and type defaultLOGICAL, that specifies if each constraint is
linear. Thei-th component oflinear is .TRUE. iff the i-th constraint is linear.

y is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the valuesy of estimates of the Lagrange multipliers corresponding to the general constraints
(see Section 2.2). Thei-th component ofy, i = 1, . . . ,m, containsyi.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

4 NLPT (May 8, 2013) GALAHAD

GALAHAD NLPT

c status is a rank-one allocatable array of dimensionm and type defaultINTEGER, that holds the status of the
problem’s constraints corresponding to the presence of their bounds. Thei-th component ofc status, j =
1, . . . ,m, contains the status ofci. Typical values areGALAHAD FREE, GALAHAD LOWER, GALAHAD UPPER,
GALAHAD RANGE, GALAHAD FIXED, GALAHAD STRUCTURAL, GALAHAD ELIMINATED, GALAHAD ACTIVE, GALA-

HAD INACTIVE or GALAHAD UNDEFINED.

J type is a scalar variable of type defaultINTEGER, that specifies the type of storage used for the constraints’Jacobian
J. Possible values areGALAHAD DENSE, GALAHAD COORDINATE or GALAHAD SPARSE BY ROWS.

J ne is a scalar variable of type defaultINTEGER, that holds the number of non-zero entries in the constraints’ Jacobian
J.

J val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD NLPT double), that holds
the values of the entries of the Jacobian matrixJ in any of the storage schemes discussed in Section 2.1.

J row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices ofJ in the sparse co-ordinate
storage scheme (see Section 2.1.2). It need not be allocatedfor either of the other two schemes.

J col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices ofJ in either the
sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme. It need not be
allocated when the dense storage scheme is used.

J ptr is a rank-one allocatable array of dimensionm+1 and type defaultINTEGER, that holds the starting position
of each row ofJ, as well as the total number of entries plus one, in the sparserow-wise storage scheme (see
Section 2.1.3). It need not be allocated when the other schemes are used.

gL is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD NLPT -
double), that holds the gradientgL of of the problem’s LagrangianL with respect tox. The j-th component of
gL, j = 1, . . . ,n, contains[gL] j.

Note that not every component of this data type is used by every package.

2.4 Argument lists and calling sequences

There are seven procedures for user calls:

1. The subroutineNLPT write stats is used to write general information on the problem such as the number of
variables and constraints of different types.

2. The subroutineNLPT write variables is used to write the current values of the problem’s variables, bounds
and of their associated duals.

3. The subroutineNLPT write constraints is used to write the current values of the problem’s constraints,
bounds and of their associated multipliers.

4. The subroutineNLPT write problem is used to write the problem’s number of variables and constraints per
type, as well as current values of the problem’s variables and constraints. This broadly corresponds to succes-
sively calling the three subroutines mentioned above. The subroutine additionally (optionally) writes the values
of the Lagrangian’s HessianH and constraints JacobianJ.

5. The subroutineNLPT J from C to Srow builds the permutation that transforms the Jacobian from coordinate
storage to sparse-by-row storage, as well as theJ ptr andJ col vectors.

6. The subroutineNLPT J from C to Scol builds the permutation that transforms the Jacobian from coordinate
storage to sparse-by-column storage, as well as theJ ptr andJ row vectors.

7. The subroutineNLPT cleanup is used to deallocate the memory space used by a problem data structure.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD NLPT (May 8, 2013) 5

NLPT GALAHAD

2.4.1 Writing the problem’s statistics

The number of variables and constraints for each type of bounds (free, lower/upper bounded, range bounded, linear,
equalities/fixed) is output by using the call

CALL NLPT write stats(problem, out)

where

problem is a scalarINTENT(IN) argument of typeNLPT problem type, that holds the problem for which statistics
must be written.

out is a scalarINTENT(IN) argument of type defaultINTEGER, that holds the device number on which problem
statistics should be written.

Note thatproblem%pname is assumed to be defined and that bothproblem%c l andproblem%c u are assumed to be
associated wheneverproblem%m > 0.

2.4.2 Writing the problem’s variables, bounds and duals

The values of the variables and associated bounds and duals is output by using the call

CALL NLPT write variables(problem, out)

where

problem is a scalarINTENT(IN) argument of typeNLPT problem type, that holds the problem for which variables
values, bounds and duals must be written.

out is a scalarINTENT(IN) argument of type defaultINTEGER, that holds the device number on which problem
variables values, bounds and duals should be written.

This routine assumes thatproblem%pname andproblem%x are associated. The bounds are printed wheneverproblem%x l
and problem%x u are associated. Moreover, it is also assumed in this case that problem%g is associated when
problem%m = 0, and thatproblem%z is associated whenproblem%m > 0. The variables’ names are used whenever
problem%vnames is associated, but this is not mandatory.

2.4.3 Writing the problem’s constraints, bounds and multipliers

The values of the constraints and associated bounds and multipliers is output by using the call

CALL NLPT write constraints(problem, out)

where

problem is a scalarINTENT(IN) argument of typeNLPT problem type, that holds the problem for which constraints
values, bounds and multipliers must be written.

out is a scalarINTENT(IN) argument of type defaultINTEGER, that holds the device number on which problem
constraints values, bounds and multipliers should be written.

This routine assumes thatproblem%pname, problem%c problem%c l, problem%c u andproblem%y are associated.
The types of constraints are used wheneverproblem%equation and/orproblem%linear are associated, but this is
not mandatory. The constraints’ names are used wheneverproblem%cnames is associated, but this is not mandatory.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

6 NLPT (May 8, 2013) GALAHAD

GALAHAD NLPT

2.4.4 Writing the entire problem

The most important data of a problem can be output by the call

CALL NLPT write problem(problem, out, print level)

where

problem is a scalarINTENT(IN) argument of typeNLPT problem type, that holds the problem whose data must be
written.

out is a scalarINTENT(IN) argument of type defaultINTEGER, that holds the device number on which the problem
data should be written.

print level is a scalarINTENT(IN) argument of type defaultINTEGER, that holds the level of details required for
output. Possible values are:

GALAHAD SILENT: no output is produced;

GALAHAD TRACE: the problem’s statistics are output, plus the norms of the current vector of variables, the
objective function’s value and the norm of its gradient, andthe maximal bound and constraint violations.

GALAHAD ACTION: the problem’s statistics are output, plus the values of the variables, bounds and associated
duals, the value of the objective function, the value of the objective function’s gradient, the values of the
constraints and associated bounds and multipliers.

GALAHAD DETAILS: as forGALAHAD ACTION, plus the values of the Lagrangian’s Hessian and of the constraints’
Jacobian.

This routine assumes thatproblem%pname andproblem%x are associated. The bounds on the variables are
printed wheneverproblem%x l andproblem%x u are associated. Moreover, it is also assumed in this case
thatproblem%g is associated whenproblem%m = 0, and thatproblem%z is associated whenproblem%m > 0.
The variables’ names are used wheneverproblem%vnames is associated, but this is not mandatory. In the case
whereproblem%m > 0, it is furthermore assumed thatproblem%c problem%c l, problem%c u andproblem%y
are associated. The types of constraints are used wheneverproblem%equation and/orproblem%linear are
associated, but this is not mandatory. The constraints’ names are used wheneverproblem%cnames is associated,
but this is not

2.4.5 Problem cleanup

The memory space allocated to allocatable in the problem data structure is deallocated by the call

CALL NLPT cleanup(problem)

where

problem is a scalarINTENT(IN) argument of typeNLPT problem type, that holds the problem whose memory space
must be deallocated.

2.4.6 Transforming the Jacobian from co-ordinate storage to sparse-by-rows

The permutation that transforms the Jacobian from co-ordinate storage to sparse-by-rows, as well as the associated
ptr andcol vectors can be obatined by the call

CALL NLPT J perm from C to Srow(problem, perm, col, ptr)

where

problem is a scalarINTENT(IN) argument of typeNLPT problem type, that holds the Jacobian matrix to transform.
Note that we must have problem%Jtype= GALAHAD COORDINATE.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD NLPT (May 8, 2013) 7

NLPT GALAHAD

perm is an allocatable to a vectorINTENT(OUT) of type defaultINTEGER and dimension equal toproblem%J nnz,
that returns the permutation of the elements ofproblem%J val that must be applied to transform the Jacobian
from co-ordinate storage to sparse-by-rows.

col is an allocatable to a vectorINTENT(OUT) of type defaultINTEGER and dimensionproblem%J ne whosek-th
component is the column index of thek-th element ofproblem%J val after permutation byperm.

ptr is an allocatable to a vectorINTENT(OUT) of type defaultINTEGER and dimensionproblem%m +1 whosei-the
component is the index inproblem%J val (after permutation byperm) of the first entry of rowi. Moreover,

ptr(problem%m+1) = problem%J ne+1.

2.4.7 Transforming the Jacobian from co-ordinate storage to sparse-by-columns

The permutation that transforms the Jacobian from co-ordinate storage to sparse-by-columns, as well as the associated
ptr androw vectors can be obtained by the call

CALL NLPT J perm from C to Scol(problem, perm, row, ptr)

where

problem is a scalarINTENT(IN) argument of typeNLPT problem type, that holds the Jacobian matrix to transform.
Note that we must have problem%Jtype= GALAHAD COORDINATE.

perm is an allocatable to a vectorINTENT(OUT) of type defaultINTEGER and dimension equal toproblem%J nnz,
that returns the permutation of the elements ofproblem%J val that must be applied to transform the Jacobian
from co-ordinate storage to sparse-by-columns.

col is an allocatable to a vectorINTENT(OUT) of type defaultINTEGER and dimensionproblem%J ne whosek-th
component is the row index of thek-th element ofproblem%J val after permutation byperm.

ptr is an allocatable to a vectorINTENT(OUT) of type defaultINTEGER and dimensionproblem%m +1 whosei-the
component is the index inproblem%J val (after permutation byperm) of the first entry of columni. Moreover,

ptr(problem%m+1) = problem%J ne+1.

3 GENERAL INFORMATION

Other modules used directly: None.

Other routines called directly: NLPT solve calls the BLAS functions*NRM2, where* isS for the default real version
andD for the double precision version.

Other modules used directly: NLPT calls theTOOLS GALAHAD module.

Input/output: Output is under the control of theprint level argument for theNLPT write problem subroutine.

Restrictions: problem%n > 0, problem%m ≥ 0. Additionally, the subroutinesNLPT write * require thatproblem%n
< 1014 andproblem%m < 1014.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

8 NLPT (May 8, 2013) GALAHAD

GALAHAD NLPT

4 EXAMPLE OF USE

Suppose we wish to present the data for the problem of minimizing the objective function(x1−2)x2 subject to the
constraintsx2

1 + x2
2 ≤ 1, 0≤ −x1 + x2, and the simple bound 0≤ x1, where the values are computed at the point

xT = (0,1), which, together with the valuesz1 = 1 andyT = (−1,0) defines a first-order critical point for the problem.
Assume that we wish to store the Lagrangian’s Hessian and theJacobian in co-ordinate format. Assume also that we
wish to write this data. We may accomplish these objectives by using the code:

PROGRAM GALAHAD_NLPT_EXAMPLE
USE GALAHAD_NLPT_double ! the problem type
USE GALAHAD_SYMBOLS
IMPLICIT NONE
INTEGER, PARAMETER :: wp = KIND(1.0D+0)
INTEGER, PARAMETER :: iout = 6 ! stdout and stderr
REAL(KIND = wp), PARAMETER :: INFINITY = (10.0_wp)**19
TYPE(NLPT_problem_type) :: problem

! Set the problem up.
problem%pname = ’NLPT-TEST’
problem%infinity = INFINITY
problem%n = 2
ALLOCATE(problem%vnames(problem%n), problem%x(problem%n) , &

problem%x_l(problem%n) , problem%x_u(problem%n), &
problem%g(problem%n) , problem%z(problem%n))

problem%m = 2
ALLOCATE(problem%equation(problem%m), problem%linear(problem%m), &

problem%c(problem%m) , problem%c_l(problem%m), &
problem%c_u(problem%m), problem%y(problem%m), &
problem%cnames(problem%m))

problem%J_ne = 4
ALLOCATE(problem%J_val(problem%J_ne), problem%J_row(problem%J_ne), &

problem%J_col(problem%J_ne))
problem%H_ne = 3
ALLOCATE(problem%H_val(problem%H_ne), problem%H_row(problem%H_ne), &

problem%H_col(problem%H_ne))
problem%H_type = GALAHAD_COORDINATE
problem%J_type = GALAHAD_COORDINATE
problem%vnames = (/ ’X1’ , ’X2’ /)
problem%x = (/ 0.0D0 , 1.0D0 /)
problem%x_l = (/ 0.0D0 , -INFINITY /)
problem%x_u = (/ INFINITY, INFINITY /)
problem%cnames = (/ ’C1’ , ’C2’ /)
problem%c = (/ 0.0D0 , 1.0D0 /)
problem%c_l = (/ -INFINITY, 0.0D0 /)
problem%c_u = (/ 1.0D0 , INFINITY /)
problem%y = (/ -1.0D0 , 0.0D0 /)
problem%equation = (/ .FALSE. , .FALSE. /)
problem%linear = (/ .FALSE. , .TRUE. /)
problem%z = (/ 1.0D0 , 0.0D0 /)
problem%f = -2.0_wp
problem%g = (/ 1.0D0 , -1.0D0 /)
problem%J_row = (/ 1 , 1 , 2 , 2 /)
problem%J_col = (/ 1 , 2 , 1 , 2 /)
problem%J_val = (/ 0.0D0 , 2.0D0 , -1.0D0 , 1.0D0 /)
problem%H_row = (/ 1 , 2 , 2 /)
problem%H_col = (/ 1 , 1 , 2 /)

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD NLPT (May 8, 2013) 9

NLPT GALAHAD

problem%H_val = (/ 2.0D0 , 1.0D0 , 2.0D0 /)
NULLIFY(problem%x_status, problem%H_ptr, problem%J_ptr, problem%gL)
CALL NLPT_write_problem(problem, iout, GALAHAD_DETAILS)

! Cleanup the problem.
CALL NLPT_cleanup(problem)
STOP

END PROGRAM GALAHAD_NLPT_EXAMPLE

which gives the following output:

+--+
| Problem : NLPT-TEST |
+--+

Free Lower Upper Range Fixed/ Linear Total
bounded bounded bounded equalities

Variables 1 1 0 0 0 2
Constraints 1 1 0 0 1 2

+--+
| Problem : NLPT-TEST |
+--+

j Name Lower Value Upper Dual value

1 X1 0.0000E+00 0.0000E+00 1.0000E+00
2 X2 1.0000E+00

OBJECTIVE FUNCTION value = -2.0000000E+00

GRADIENT of the objective function:

1 1.000000E+00 -1.000000E+00

Lower triangle of the HESSIAN of the Lagrangian:

i j value i j value i j value

1 1 2.0000E+00 2 1 1.0000E+00 2 2 2.0000E+00

+--+
| Problem : NLPT-TEST |
+--+

i Name Lower Value Upper Dual value

1 C1 0.0000E+00 1.0000E+00 -1.0000E+00
2 C2 0.0000E+00 1.0000E+00 0.0000E+00 linear

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

10 NLPT (May 8, 2013) GALAHAD

GALAHAD NLPT

JACOBIAN matrix:

i j value i j value i j value

1 1 0.0000E+00 1 2 2.0000E+00 2 1 -1.0000E+00
2 2 1.0000E+00

-------------------- END OF PROBLEM ----------------------

We could choose to hold the lower triangle ofH is sparse-by-rows format by replacing the lines

ALLOCATE(problem%H_val(problem%H_ne), problem%H_row(problem%H_ne), &
problem%H_col(problem%H_ne))

problem%H_type = GALAHAD_COORDINATE

and

problem%H_row = (/ 1 , 2 , 2 /)
problem%H_col = (/ 1 , 1 , 2 /)
problem%H_val = (/ 2.0D0 , 1.0D0 , 2.0D0 /)
NULLIFY(problem%x_status, problem%H_ptr, problem%J_ptr, problem%gL)

by

ALLOCATE(problem%H_val(problem%H_ne), problem%H_col(problem%H_ne), &
problem%H_ptr(problem%n + 1))

problem%H_type = GALAHAD_SPARSE_BY_ROWS

and

problem%H_ptr = (/ 1 , 2 , 4 /)
problem%H_col = (/ 1 , 1 , 2 /)
problem%H_val = (/ 2.0D0 , 1.0D0 , 2.0D0 /)
NULLIFY(problem%x_status, problem%H_row, problem%J_ptr, problem%gL)

or using a dense storage format with the replacement lines

ALLOCATE(problem%H_val(((problem%n + 1) * problem%n) / 2))
problem%H_type = GALAHAD_DENSE

and

problem%H_val = (/ 2.0D0 , 1.0D0 , 2.0D0 /)
NULLIFY(problem%x_status, problem%H_row, problem%H_col, problem%H_ptr, &

problem%J_ptr, problem%gL)

respectively.

For examples of how the derived data typeNLPT problem type may be used in conjunction with theGALAHAD
nonlinear feasibility code, see the specification sheets for theGALAHAD FILTRANE package.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD NLPT (May 8, 2013) 11

