
GALAHAD ROOTS
USER DOCUMENTATION GALAHAD Optimization Library version 2.5

1 SUMMARY

This package uses classical formulae together with Newton’s method to find all the real roots of real polynomials.

ATTRIBUTES — Versions: GALAHAD ROOTS single, GALAHAD ROOTS double. Uses:GALAHAD SYMBOLS, GALAHAD-
SPACE, GALAHAD SPECFILE, GALAHAD SORT. Date: November 2010.Origin: N. I. M. Gould, Rutherford Appleton

Laboratory.Language:Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requires aUSE statement such as

Single precision version

USE GALAHAD ROOTS single

Double precision version

USE GALAHAD ROOTS double

If it is required to use both modules at the same time, the derived typesROOTS control type, ROOTS inform type
andROOTS data type (Section 2.1) and the subroutineROOTS solve, (Section 2.2) must be renamed on one of the
USE statements.

2.1 The derived data types

Three derived data types are accessible from the package.

2.1.1 The derived data type for holding control parameters

The derived data typeROOTS control type is used to hold controlling data. Default values may be obtained by calling
ROOTS initialize (see Section 2.2.1), while components may also be changed bycalling ROOTS read specfile
(see Section 2.4.1). The components ofROOTS control type are:

error is a scalar variable of type defaultINTEGER, that holds the stream number for error messages. Printing of error
messages inROOTS solve andROOTS terminate is suppressed iferror ≤ 0. The default iserror = 6.

out is a scalar variable of type defaultINTEGER, that holds the stream number for informational messages. Printing
of informational messages inROOTS solve is suppressed ifout < 0. The default isout = 6.

print level is a scalar variable of type defaultINTEGER, that is used to control the amount of informational output
which is required. No informational output will occur ifprint level ≤ 0. If print level ≥ 1, debugging
information will be provided. The default isprint level = 0.

tol is anINTENT(IN) scalar of type defaultREAL (double precision inGALAHAD ROOTS double) that should be set
to the required accuracy of the roots. Every effort will be taken to ensure that each computed rootxc lies within
± tol xe of its exact equivalentxe, although sometimes the required accuracy will not be possible. The default
is tol = EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD ROOTS double).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD ROOTS (May 8, 2013) 1

ROOTS GALAHAD

space critical is a scalar variable of type defaultLOGICAL, that must be set.TRUE. if space is critical when
allocating arrays and.FALSE. otherwise. The package may run faster ifspace critical is .FALSE. but at the
possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type defaultLOGICAL, that must be set.TRUE. if the user wishes to
terminate execution if a deallocation fails, and.FALSE. if an attempt to continue will be made. The default is
deallocate error fatal = .FALSE..

prefix is a scalar variable of type defaultCHARACTER and length 30, that may be used to provide a user-selected
character string to preface every line of printed output. Specifically, each line of output will be prefaced by the
stringprefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied
string. If the user does not want to preface lines by such a string, they may use the defaultprefix = "".

2.1.2 The derived data type for holding informational parameters

The derived data typeROOTS inform type is used to hold parameters that give information about the progress and
needs of the algorithm. The components ofROOTS inform type are:

status is a scalar variable of type defaultINTEGER, that gives the exit status of the algorithm. See Section 2.3for
details.

alloc status is a scalar variable of type defaultINTEGER, that gives the status of the last attempted array allocation
or deallocation. This will be 0 ifstatus = 0.

bad alloc is a scalar variable of type defaultCHARACTER and length 80, that gives the name of the last internal array
for which there were allocation or deallocation errors. This will be the null string ifstatus = 0.

2.1.3 The derived data type for holding problem data

The derived data typeROOTS data type is used to hold all the data for a particular problem, betweencalls ofROOTS
procedures. This data should be preserved, untouched, fromthe initial call toROOTS initialize to the final call to
ROOTS terminate.

2.2 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.4 for further features):

1. The subroutineROOTS initialize is used to set default values, and initialize private data.

2. The subroutineROOTS solve is called to find the real roots of the polynomial

d

∑
i=0

aix
i (2.1)

of degreed, where the coefficientsai, 0≤ i ≤ d are real.

3. The subroutineROOTS terminate allows the user to automatically deallocate array components of the private
data, allocated byROOTS solve, at the end of the solution process.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

2 ROOTS (May 8, 2013) GALAHAD

GALAHAD ROOTS

2.2.1 The initialization subroutine

Default values are provided as follows:

CALL ROOTS initialize(data, control, inform)

data is a scalarINTENT(INOUT) argument of typeROOTS data type (see Section 2.1.3). It is used to hold data about
the problem being solved.

control is a scalarINTENT(OUT) argument of typeROOTS control type (see Section 2.1.1). On exit,control
contains default values for the components as described in Section 2.1.1. These values should only be changed
after callingROOTS initialize.

inform is a scalarINTENT(OUT) argument of typeROOTS inform type (see Section 2.1.2). A successful call to
ROOTS initialize is indicated when the componentstatus has the value 0.

2.2.2 The solution subroutine

The roots of the polynomial (2.1) are found as follows

CALL ROOTS solve(A, nroots, ROOTS, control, inform, data)

A is anINTENT(IN) rank-one array of type defaultREAL (double precision inGALAHAD ROOTS double), whose
lower bound must be0 and whose upper bound specifies the degree,d, of the polynomial. The entriesA(i), i = 0,
. . . ,UBOUND(A), must contain the values of the real coefficientsai, 0≤ i ≤ d. Restrictions: UBOUND(A,1) ≥ 0.

nroots is anINTENT(OUT) scalar of type defaultINTEGER, that gives the number of real roots of the polynomial.

ROOTS is anINTENT(OUT) rank-one array of lengthd and type defaultREAL (double precision inGALAHAD ROOTS-
double). On exit,ROOTS(:nroots) give the values of the real roots of the polynomial in increasing order.

Restrictions: SIZE(ROOTS) ≥ UBOUND(A,1).

control is a scalarINTENT(IN) argument of typeROOTS control type (see Section 2.1.1). Default values may be
assigned by callingROOTS initialize prior to the first call toROOTS solve.

inform is a scalarINTENT(INOUT) argument of typeROOTS inform type (see Section 2.1.2). A successful call to
ROOTS solve is indicated when the componentstatus has the value 0. For other return values ofstatus, see
Section 2.3.

data is a scalarINTENT(INOUT) argument of typeROOTS data type (see Section 2.1.3). It is used to hold data about
the problem being solved. It must not have been alteredby the usersince the last call toROOTS initialize.

2.2.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL ROOTS terminate(data, control, inform)

data is a scalarINTENT(INOUT) argument of typeROOTS data type exactly as forROOTS solve, which must not
have been alteredby the user since the last call toROOTS initialize. On exit, array components will have
been deallocated.

control is a scalarINTENT(IN) argument of typeROOTS control type exactly as forROOTS solve.

inform is a scalarINTENT(OUT) argument of typeROOTS inform type exactly as forROOTS solve. Only the com-
ponentstatus will be set on exit, and a successful call toROOTS terminate is indicated when this component
status has the value 0. For other return values ofstatus, see Section 2.3.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD ROOTS (May 8, 2013) 3

ROOTS GALAHAD

2.3 Warning and error messages

A negative value ofinform%status on exit fromROOTS solve indicates that an error has occurred. No further calls
should be made until the error has been corrected. Possible values are:

-1. An allocation error occured. A message indicating the offending array is written on unitcontrol%error, and the
returned allocation status and a string containing the nameof the offending array are held ininform%alloc -
status andinform%bad alloc respectively.

-2. A deallocation error occured. A message indicating the offending array is written on unitcontrol%error and the
returned allocation status and a string containing the nameof the offending array are held ininform%alloc -
status andinform%bad alloc respectively.

-3. Either the specified degree of the polynomial indegree is less than 0 or the declared dimension of the array
ROOTS is smaller than the specified degree.

2.4 Further features

In this section, we describe an alternative means of settingcontrol parameters, that is components of the variable
control of type ROOTS control type (see Section 2.1.1), by reading an appropriate data specification file using
the subroutineROOTS read specfile. This facility is useful as it allows a user to changeROOTS control parameters
without editing and recompiling programs that callROOTS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command
occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify
a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.
All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not
contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more
than 30 characters, and each line of the specfile is limited to80 characters, including the blanks separating keyword
and value.

The portion of the specification file used byROOTS read specfile must start with a ”BEGIN ROOTS” command
and end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by CQP_read_specfile ..)
BEGIN CQP

keyword value
.......
keyword value

END
(.. lines ignored by CQP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN ROOTS” and “END” delimiter
command lines may contain additional (trailing) strings solong as such strings are separated by one or more blanks,
so that lines such as

BEGIN CQP SPECIFICATION

and

END CQP SPECIFICATION

are acceptable. Furthermore, between the “BEGIN ROOTS” and “END” delimiters, specification commands may occur
in any order. Blank lines and lines whose first non-blank character is! or * are ignored. The content of a line after a!

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

4 ROOTS (May 8, 2013) GALAHAD

GALAHAD ROOTS

or * character is also ignored (as is the! or * character itself). This provides an easy manner to ”commentout” some
specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real
values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for
logical parameters are ”ON”, ” TRUE”, ” .TRUE.”, ” T”, ” YES”, ” Y”, or ”OFF”, ” NO”, ” N”, ” FALSE”, ” .FALSE.” and ”F”.
Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input whenROOTS read specfile is called, and the associated device
number passed to the routine in device (see below). Note thatthe corresponding file isREWINDed, which makes it
possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed
by ROOTS read specfile.

2.4.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL CQP_read_specfile(control, device)

control is a scalarINTENT(INOUT)argument of typeROOTS control type (see Section 2.1.1). Default values
should have already been set, perhaps by callingROOTS initialize. On exit, individual components of
control may have been changed according to the commands found in the specfile. Specfile commands and
the component (see Section 2.1.1) ofcontrol that each affects are given in Table 2.1.

command component ofcontrol value type
error-printout-device %error integer
printout-device %out integer
print-level %print level integer
root-tolerance %tol real
space-critical %space critical logical
deallocate-error-fatal %deallocate error fatal logical
output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components ofcontrol.

device is a scalarINTENT(IN)argument of type defaultINTEGER, that must be set to the unit number on which the
specfile has been opened. Ifdevice is not open,control will not be altered and execution will continue, but
an error message will be printed on unitcontrol%error.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: ROOTS solve calls theGALAHAD packagesGALAHAD SYMBOLS, GALAHAD SPACE, GALAHAD SPECFILE
andGALAHAD SORT.

Input/output: Output is under control of the argumentscontrol%error, control%out andcontrol%print level.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD ROOTS (May 8, 2013) 5

ROOTS GALAHAD

4 METHOD

Littlewood and Ferrari’s algorithms are used to find estimates of the real roots of cubic and quartic polynomials,
respectively; a stabilized version of the well-known formula is used in the quadratic case. Newton’s method is used
to further refine the computed roots if necessary. Madsen andReid’s method is used for polynomials whose degree
exceeds four.

5 EXAMPLE OF USE

Suppose we wish to solve the quadratic, cubic, quartic and quintic equations

x2−3x+2= 0
x3−6x2+11x−6= 0

x4−10x3+35x2−50x+24= 0 and
x5−15x4+85x3−225x2+274x−120= 0.

Then we may use the following code:

! THIS VERSION: GALAHAD 2.1 - 22/03/2007 AT 09:00 GMT.
PROGRAM GALAHAD_ROOTS_EXAMPLE
USE GALAHAD_ROOTS_double ! double precision version
IMPLICIT NONE
INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
REAL (KIND = wp), PARAMETER :: one = 1.0_wp
INTEGER :: degree, nroots
REAL (KIND = wp) :: A(0 : 5), ROOTS(5)
TYPE (ROOTS_data_type) :: data
TYPE (ROOTS_control_type) :: control
TYPE (ROOTS_inform_type) :: inform
control%tol = EPSILON(one) ** 0.75 ! accuracy requested
DO degree = 2, 5 ! polynomials of degree 2 to 5
IF (degree == 2) THEN

A(0) = 2.0_wp
A(1) = - 3.0_wp
A(2) = 1.0_wp
WRITE(6, "(’ Quadratic ’)")
CALL ROOTS_solve(A(: degree), nroots, ROOTS(: degree), &

control, inform, data)
ELSE IF (degree == 3) THEN

A(0) = - 6.0_wp
A(1) = 11.0_wp
A(2) = - 6.0_wp
A(3) = 1.0_wp
WRITE(6, "(/, ’ Cubic ’)")
CALL ROOTS_solve(A(: degree), nroots, ROOTS(: degree), &

control, inform, data)
ELSE IF (degree == 4) THEN

A(0) = 24.0_wp
A(1) = - 50.0_wp
A(2) = 35.0_wp
A(3) = - 10.0_wp
A(4) = 1.0_wp
WRITE(6, "(/, ’ Quartic ’)")
CALL ROOTS_solve(A(: degree), nroots, ROOTS(: degree), &

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

6 ROOTS (May 8, 2013) GALAHAD

GALAHAD ROOTS

control, inform, data)
ELSE IF (degree == 5) THEN
A(0) = - 120.0_wp
A(1) = 274.0_wp
A(2) = - 225.0_wp
A(3) = 85.0_wp
A(4) = - 15.0_wp
A(5) = 1.0_wp
WRITE(6, "(/, ’ Quintic ’)")
CALL ROOTS_solve(A(: degree), nroots, ROOTS(: degree), &

control, inform, data)
END IF
IF (nroots == 0) THEN
WRITE(6, "(’ no real roots ’)")

ELSE IF (nroots == 1) THEN
WRITE(6, "(’ 1 real root ’)")

ELSE IF (nroots == 2) THEN
WRITE(6, "(’ 2 real roots ’)")

ELSE IF (nroots == 3) THEN
WRITE(6, "(’ 3 real roots ’)")

ELSE IF (nroots == 4) THEN
WRITE(6, "(’ 4 real roots ’)")

ELSE IF (nroots == 5) THEN
WRITE(6, "(’ 5 real roots ’)")

END IF
IF (nroots /= 0) WRITE(6, "(’ roots: ’, 5ES10.2)") ROOTS(: nroots)

END DO
END PROGRAM GALAHAD_ROOTS_EXAMPLE

This produces the following output:

Quadratic
2 real roots
roots: 1.00E+00 2.00E+00

Cubic
3 real roots
roots: 1.00E+00 2.00E+00 3.00E+00

Quartic
4 real roots
roots: 1.00E+00 2.00E+00 3.00E+00 4.00E+00

Quintic
5 real roots
roots: 1.00E+00 2.00E+00 3.00E+00 4.00E+00 5.00E+00

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD ROOTS (May 8, 2013) 7

