
GALAHAD PRESOLVE
USER DOCUMENTATION GALAHAD Optimization Library version 2.5

1 SUMMARY

Presolving consists in simplifying the formulation of a quadratic programming problem using simple transformations,
in order to produce a “reduced” problem in a “standard form”.This reduced problem is then passed to a solver.
Once the reduced problem has been solved, it is then “restored” to obtain its solution in the context of its original
formulation.

GALAHAD PRESOLVE is a package that applies presolving techniques to the linear or quadratic program

minimizeq(x) = f +gT x+ 1
2xT Hx (1.1)

subject to the general linear constraints
cl

i ≤ aT
i x ≤ cu

i , i = 1, . . . ,m, (1.2)

and the simple bound constraints
xl

j ≤ x j ≤ xu
j , j = 1, . . . ,n, (1.3)

where the scalarf , then-dimensional vectorsg, xl andxu, them-dimensional vectorscl andcu, then× n symmetric
matrix H and them× n matrix A (whose rows are the vectorsaT

i) are given. Furthermore, bounds on the Lagrange
multipliersy associated to the general linear constraints and on the dualvariablesz associated to the bound constraints
are also imposed in the form

yl
i ≤ yi ≤ yu

i , i = 1, . . . ,m,

and
zl

i ≤ zi ≤ zu
i , i = 1, . . . ,z,

where them-dimensional vectorsyl andyu, as well as then-dimensional vectorsxl andxu are given. Any component
of cl , cu, xl , xu, yl, yu, zl or zu may be infinite.

ATTRIBUTES — Versions: GALAHAD PRESOLVE single, GALAHAD PRESOLVE double. Uses:GALAHAD SMT, GALAHAD QPT,
GALAHAD SPECFILE, GALAHAD SORT, GALAHAD SYMBOLS. Date: March 2002.Origin: N. I. M. Gould, Rutherford Ap-
pleton Laboratory, and Ph. L. Toint, The University of Namur, Belgium. Language: Fortran 95 + TR 15581 or
Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requires aUSE statement such as

Single precision version

USE GALAHAD PRESOLVE single

Double precision version

USE GALAHAD PRESOLVE double

If it is required to use both modules at the same time, the derived typesSMT problem type, QPT problem type,
PRESOLVE control type, PRESOLVE inform type andPRESOLVE data type (Section 2.3) and the five subroutines
PRESOLVE initialize, PRESOLVE read specfile, PRESOLVE apply, PRESOLVE restore, PRESOLVE terminate,
(Section 2.4) must be renamed on one of theUSE statements.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 1

PRESOLVE GALAHAD

2.1 Matrix storage formats

Both the Hessian matrixH and the constraint JacobianA may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrixA is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensionalarray. Componentn∗ (i−1)+ j of the storage arrayA%val
will hold the valueai j for i = 1, . . . ,m, j = 1, . . . ,n. SinceH is symmetric, only the lower triangular part (that is the
part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component
i∗ (i−1)/2+ j of the storage arrayH%val will hold the valuehi j (and, by symmetry,h ji) for 1≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For thel-th entry ofA, its row indexi, column indexj and
valueai j are stored in thel-th components of the integer arraysA%row, A%col and real arrayA%val, respectively. The
order is unimportant, but the total number of entriesA%ne is also required. The same scheme is applicable toH (thus
requiring integer arraysH%row, H%col, a real arrayH%val and an integer valueH%ne), except that only the entries in
the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time theyare ordered so that those in rowi appear directly before
those in rowi+1. For thei-th row of A, the i-th component of a integer arrayA%ptr holds the position of the first
entry in this row, whileA%ptr (m+1) holds the total number of entries plus one. The column indices j and valuesai j

of the entries in thei-th row are stored in componentsl = A%ptr(i), . . . ,A%ptr (i+1)−1 of the integer arrayA%col,
and real arrayA%val, respectively. The same scheme is applicable toH (thus requiring integer arraysH%ptr, H%col,
and a real arrayH%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e.,hi j = 0 for all 1≤ i 6= j ≤ n) only the diagonals entrieshii, 1≤ i ≤ n, need be stored, and the first
n components of the arrayH%val may be used for the purpose. There is no sensible equivalent for the non-squareA.

2.2 The GALAHAD symbols

The following description make use of “symbols” that are publicly available in the GALAHADSYMBOLS module.
These symbols are conventional names given to specific integer values, that allow a more natural specification of
the various options and parameters of the package. Each symbol provided in the SYMBOLS module is of the form
GALAHAD NAME, whereNAME is the name of the symbol. For clarify and conciseness, we will represent such a symbol
by GALAHAD NAME (in sans-serif upper case font) in what follows. See Section5 to see how symbols may be used in
the program unit that calls the PRESOLVE subroutines.

2.3 The derived data types

Six derived data types are accessible from the package.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

2 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

2.3.1 The derived data type for holding matrices

The derived data typeSMT TYPE is used to hold the matricesA andH. The components ofSMT TYPE used here are:

m is a scalar component of type defaultINTEGER, that holds the number of rows in the matrix.

n is a scalar component of type defaultINTEGER, that holds the number of columns in the matrix.

ne is a scalar variable of type defaultINTEGER, that either holds the number of matrix entries or is used to flag the
storage scheme used.

val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD PRESOLVE double) and
dimension at leastne, that holds the values of the entries. Each pair of off-diagonal entrieshi j = h ji of a
symmetric matrixH is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the
sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type defaultINTEGER, and dimension at leastne, that may hold the row indices
of the entries. (see §2.1.2).

col is a rank-one allocatable array of type defaultINTEGER, and dimension at leastne, that may the column indices
of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type defaultINTEGER, and dimension at leastm + 1, that may hold the pointers
to the first entry in each row (see §2.1.3).

2.3.2 The derived data type for holding the problem

The derived data typeQPT problem type is used to hold the problem. The components ofQPT problem type are:

new problem structure is a scalar variable of type defaultLOGICAL, that is.TRUE. if this is the first (or only)
problem in a sequence of problems with identical “structure” to be attempted, and.FALSE. if a previous problem
with the same “structure” (but different numerical data) has been solved. We say that two problems have the
same structure if they differ only in their components of type REAL, which means that they share the same
dimensions and matrix sparsity patterns. See Section 4 for adescription of how the package may be applied to
more than one problem with the same structure.

When a.TRUE. value is specified for this component on entry inPRESOLVE apply (see below), this routine
performs extensive checks on the consistency of theproblem structure and also allocates the necessary problem
dependent workspace. It is thus mandatory that the.TRUE. value is used on the first call toPRESOLVE apply, but
the.FALSE. value should be used for any subsequent call to this routine for problems with the same structure.

n is a scalar variable of type defaultINTEGER, that holds the number of optimization variables,n.

m is a scalar variable of type defaultINTEGER, that holds the number of general linear constraints,m.

H is scalar variable of typeSMT TYPE that holds the Hessian matrixH. The following components are used:

H%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofH%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten com-
ponents ofH%type must contain the stringCOORDINATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofH%type must contain the stringSPARSE BY ROWS, and for
the diagonal storage scheme (see Section 2.1.4), the first eight components ofH%type must contain the
stringDIAGONAL.

For convenience, the procedureSMT put may be used to allocate sufficient space and insert the required
keyword intoH%type. For example, ifprob is of derived typePRESOLVE problem type and involves a
Hessian we wish to store using the co-ordinate scheme, we maysimply

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 3

PRESOLVE GALAHAD

CALL SMT_put(prob%H%type, ’COORDINATE’)

See the documentation for theGALAHAD packageSMT for further details on the use ofSMT put.

H%ne is a scalar variable of type defaultINTEGER, that holds the number of entries in thelower triangular part
of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other
three schemes.

H%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD PRESOLVE double),
that holds the values of the entries of thelower triangular part of the Hessian matrixH in any of the
storage schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices of thelower triangu-
lar part ofH in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any
of the other three schemes.

H%col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices of the
lower triangular part ofH in either the sparse co-ordinate (see Section 2.1.2), or thesparse row-wise (see
Section 2.1.3) storage scheme. It need not be allocated whenthe dense or diagonal storage schemes are
used.

H%ptr is a rank-one allocatable array of dimensionn+1 and type defaultINTEGER, that holds the starting posi-
tion of each row of thelower triangular part ofH, as well as the total number of entries plus one, in the
sparse row-wise storage scheme (see Section 2.1.3). It neednot be allocated when the other schemes are
used.

gradient kind is a scalar variable of type defaultINTEGER, that is used to indicate whether the components of the
gradientg have special or general values. Possible values forgradient kind are:

0 In this case,g= 0.

1 In this case,gi = 1 for i = 1, . . . ,n.

6= 0,1 In this case, general values ofg will be used, and will be provided by the user in the componentG.

G is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD PRESOLVE -
double), that holds the gradientg of the linear term of the quadratic objective function. Thej-th component of
G, j = 1, . . . ,n, containsgj. If gradient kind = 0, 1,G need not be allocated.

f is a scalar variable of type defaultREAL (double precision inGALAHAD PRESOLVE double), that holds the con-
stant term,f , in the objective function.

A is scalar variable of typeSMT TYPE that holds the Jacobian matrixA. The following components are used:

A%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofA%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten compo-
nents ofA%type must contain the stringCOORDINATE, while for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofA%type must contain the stringSPARSE BY ROWS.

Just as forH%type above, the procedureSMT put may be used to allocate sufficient space and insert
the required keyword intoA%type. Once again, ifprob is of derived typePRESOLVE problem type and
involves a Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’)

A%ne is a scalar variable of type defaultINTEGER, that holds the number of entries inA in the sparse co-ordinate
storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

4 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

A%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD PRESOLVE double),
that holds the values of the entries of the Jacobian matrixA in any of the storage schemes discussed in
Section 2.1.

A%row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices ofA in the sparse co-
ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices ofA in
either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.
It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimensionm+1 and type defaultINTEGER, that holds the starting po-
sition of each row ofA, as well as the total number of entries plus one, in the sparserow-wise storage
scheme (see Section 2.1.3). It need not be allocated when theother schemes are used.

C l is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD PRESOLVE-
double), that holds the vector of lower boundscl on the general constraints. Thei-th component ofC l,

i=1, . . . ,m, containscl
i . Infinite bounds are allowed by setting the correspondingcomponents ofC l to any value

smaller than-infinity, whereinfinity is a component of the control arraycontrol (see Section 2.3.3).

C u is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD PRESOLVE-
double), that holds the vector of upper boundscu on the general constraints. Thei-th component ofC u,

i = 1, . . . ,m, containscu
i . Infinite bounds are allowed by setting the corresponding components ofC u to any

value larger thaninfinity, whereinfinity is a component of the control arraycontrol (see Section 2.3.3).

C status is a rank-one allocatable array of dimensionm and type defaultINTEGER, that holds the status of the problem
constraints (active or inactive). A constraint is said to beinactive if it is not included in the formulation of the
considered quadratic program.

X l is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD PRESOLVE -
double), that holds the vector of lower boundsxl on the the variables. Thej-th component ofX l, j = 1, . . . ,n,
containsxl

j. Infinite bounds are allowed by setting the corresponding components ofX l to any value smaller
than-infinity, whereinfinity is a component of the control arraycontrol (see Section 2.3.3).

X u is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD PRESOLVE-
double), that holds the vector of upper boundsxu on the variables. Thej-th component ofX u, j = 1, . . . ,n,

containsxu
j . Infinite bounds are allowed by setting the corresponding components ofX u to any value larger

than thatinfinity, whereinfinity is a component of the control arraycontrol (see Section 2.3.3).

X status is a rank-one allocatable array of dimensionn and type defaultINTEGER, that holds the status of the prob-
lem variables (active or inactive). Variablej is said to be inactive if its value is fixed to the current valueof
problem%X(j), in which case it can be seen as a parameter of the quadratic program.

Y l is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD PRESOLVE -
double), that holds the vector of lower boundsyl on the the multipliers. Thej-th component ofY l, j = 1, . . . ,m,
containsyl

j. Infinite bounds are allowed by setting the corresponding components ofY l to any value smaller
than-infinity, whereinfinity is a component of the control arraycontrol (see Section 2.3.3).

Y u is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD PRESOLVE-
double), that holds the vector of upper boundsyu on the multipliers. Thej-th component ofY u, j = 1, . . . ,m,

containsyu
j . Infinite bounds are allowed by setting the corresponding components ofY u to any value larger

than thatinfinity, whereinfinity is a component of the control arraycontrol (see Section 2.3.3).

Z l is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD PRESOLVE-
double), that holds the vector of lower boundszl on the the dual variables. Thej-th component ofZ l, j =

1, . . . ,n, containszl
j. Infinite bounds are allowed by setting the corresponding components ofZ l to any value

smaller than-infinity, whereinfinity is a component of the control arraycontrol (see Section 2.3.3).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 5

PRESOLVE GALAHAD

Z u is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD PRESOLVE -
double), that holds the vector of upper boundszu on the dual variables. Thej-th component ofZ u, j = 1, . . . ,n,
containszu

j . Infinite bounds are allowed by setting the corresponding components ofZ u to any value larger than
thatinfinity, whereinfinity is a component of the control arraycontrol (see Section 2.3.3).

X is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD PRESOLVE-
double), that holds the valuesx of the optimization variables. Thej-th component ofX, j = 1, . . . ,n, contains

x j.

Z is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD PRESOLVE -
double), that holds the valuesz of estimates of the dual variables corresponding to the simple bound constraints
(see Section 4). Thej-th component ofZ, j = 1, . . . ,n, containsz j .

C is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD PRESOLVE -
double), that holds the valuesAx of the constraints. Thei-th component ofC, i=1, . . . ,m, containsaT

i x≡ (Ax)i.

Y is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD PRESOLVE-
double), that holds the valuesy of estimates of the Lagrange multipliers corresponding to the general linear

constraints (see Section 4). Thei-th component ofY, i = 1, . . . ,m, containsyi.

2.3.3 The derived data type for holding control parameters

The derived data typePRESOLVE control type is used to hold controlling data. Default values may be obtained
by callingPRESOLVE initialize (see Section 2.4.1), while individual components may also be changed by calling
PRESOLVE read specfile (see Section 2.6.1). The components ofPRESOLVE control type are:

termination is a scalar variable of type defaultINTEGER, that determines the strategy for terminating the presolve
analysis. Possible values are:

GALAHAD REDUCED SIZE: presolving is continued as long as one of the sizes of the problem (n, m, sizes ofA
andH) is being reduced;

GALAHAD FULL PRESOLVE: presolving is continued as long as problem transformationsremain possible.

Note that the maximum number of analysis passes (max nbr passes) and the maximum number of problem
transformations (max nbr transforms) set an upper limit on the presolving effort irrespective ofthe choice
of termination. The only effect of this latter parameter is to allow for early termination. The default is
termination = GALAHAD REDUCED SIZE.

max nbr transforms is a scalar variable of type defaultINTEGER, that determines the maximum number of problem
transformations. The default ismax nbr transforms = 1000000.

max nbr passes is a scalar variable of type defaultINTEGER, that determines the maximum number of analysis passes
for problem analysis during a single call toPRESOLVE apply. The default ismax nbr passes = 25.

c accuracy is a scalar variable of type defaultREAL (double precision inGALAHAD PRESOLVE double), that holds
the relative accuracy at which the general linear constraints are satisfied at the exit of the solver. Note that this
value is not used before the restoration of the problem. The default isc accuracy = 10−4 in single precision,
andc accuracy = 10−6 in double precision.

z accuracy is a scalar variable of type defaultREAL (double precision inGALAHAD PRESOLVE double), that holds
the relative accuracy at which the dual feasibility constraints are satisfied at the exit of the solver. Note that this
value is not used before the restoration of the problem. The default isz accuracy = 10−4 in single precision,
andz accuracy = 10−6 in double precision.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

6 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

infinity is a scalar variable of type defaultREAL (double precision inGALAHAD PRESOLVE double), that holds the
value beyond which a number is deemed equal to plus infinity (minus infinity being defined as its opposite) The
default isinfinity = 1019.

out is a scalar variable of type defaultINTEGER, that holds the unit number associated with the device used for
printout. The default isout = 6.

errout is a scalar variable of type defaultINTEGER, that holds the unit number associated with the device used for
error ouput. The default iserrout = 6.

print level is a scalar variable of type defaultINTEGER, that holds the level of printout requested by the user. See
Section 2.7. The default isprint level = GALAHAD SILENT.

dual transformations is a scalar variable of type defaultLOGICAL, that has the value.TRUE. if dual transforma-
tions of the problem are allowed. Note that this implies thatthe reduced problem is solved accurately (for
the dual feasibility condition to hold) as to be able to restore the problem to the original constraints and vari-
ables. The value.FALSE. prevents dual transformations to be applied, thus allowingfor inexact solution of
the reduced problem. The setting of this control parameter overides the values ofget z, get z bounds, get y,
get y bounds, dual constraints freq, singleton columns freq, doubleton columns freq, z accuracy
andcheck dual feasibility. The default isdual transformations = .TRUE..

redundant xc is a scalar variable of type defaultLOGICAL, that has the value.TRUE. if redundant variables and
constraints (that is variables that don’t occur in the objective function and are either unbounded above with
all their coefficients inA being positive for constraints that are unbounded above andnegative for constraints
that are unbounded below, or unbounded below with all their coefficients inA being positive for constraints
that are unbounded below or negative for all constraints that are unbounded above) are to be removed from the
problem with their associated constraints before any otherproblem transformation is attempted. The default is
redundant xc = .TRUE..

primal constraints freq is a scalar variable of type defaultINTEGER, that holds the frequency of primal con-
straints analysis in terms of presolving passes. A value of 2indicates that primal constraints are analyzed every 2
presolving passes. A zero value indicates that they are never analyzed. The default isprimal constraints freq
= 1.

dual constraints freq is a scalar variable of type defaultINTEGER, that holds the frequency of dual constraints
analysis in terms of presolving passes. A value of 2 indicates that dual constraints are analyzed every 2 pre-
solving passes. A zero value indicates that they are never analyzed. The default isdual constraints freq =
1.

singleton columns freq is a scalar variable of type defaultINTEGER, that holds the frequency of singleton column
analysis in terms of presolving passes. A value of 2 indicates that singleton columns are analyzed every 2
presolving passes. A zero value indicates that they are never analyzed. The default issingleton columns freq
= 1.

doubleton columns freq is a scalar variable of type defaultINTEGER, that holds the frequency of doubleton column
analysis in terms of presolving passes. A value of j indicates that doubleton columns are analyzed every 2
presolving passes. A zero value indicates that they are never analyzed. The default isdoubleton columns freq
= 1.

unc variables freq is a scalar variable of type defaultINTEGER, that holds the frequency of the attempts to fix lin-
early unconstrained variables, expressed in terms of presolving passes. A value of 2 indicates that attempts
are made every 2 presolving passes. A zero value indicates that no attempt is ever made. The default is
unc variables freq = 1.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 7

PRESOLVE GALAHAD

dependent variables freq is a scalar variable of type defaultINTEGER, that holds the frequency of search for
dependent variables in terms of presolving passes. A value of 2 indicates that dependent variables are searched
for every 2 presolving passes. A zero value indicates that noattempt is ever made to detect such variables. The
default isdependent variables freq = 1.

sparsify rows freq is a scalar variable of type defaultINTEGER, that holds the frequency of the attempts to make A
sparser in terms of presolving passes. A value of 2 indicatesthat attempts are made every 2 presolving passes.
A zero value indicates that no attempt is ever made. The default is sparsify rows freq = 1.

max fill is a scalar variable of type defaultINTEGER, that holds the maximum percentage of fill in each row ofA.
Note that this is a row-wise measure: globally fill never exceeds the storage initially used forA, no matter how
largemax fill is chosen. Ifmax fill is negative, no limit is put on row fill. The default ismax fill = -1 (no
limit).

transf file nbr is a scalar variable of type defaultINTEGER, that holds the unit number to be associated with the
file(s) used for saving problem transformations on a disk file. The default istransf file nbr = 52.

transf buffer size is a scalar variable of type defaultINTEGER, that holds the number of transformations that can
be kept in memory at once (that is without being saved on a diskfile). The default istransf buffer size =
50000.

transf file status is a scalar variable of type defaultINTEGER, that holds the exit status of the file where problem
transformations are saved:

KEEP: the file is not deleted after program termination,

DELETE: the file is not deleted after program termination.

The default istransf file status = GALAHAD KEEP.

transf file name is a scalar variable of type defaultINTEGER, that holds the name of the file (to be) used for
storing problem transformation on disk. Note that this parameter must be identical for all calls toPRESOLVE
that followsPRESOLVE read specfile. It can then only be changed after callingPRESOLVE terminate. The
default istransf file name = transf.sav.

y sign is a scalar variable of type defaultINTEGER, that determines the convention of sign used for the multipliers
associated with the general linear constraints. Possible values are:

GALAHAD POSITIVE: all multipliers corresponding to active inequality constraints are non-negative for lower
bound constraints and non-positive for upper bounds constraints;

GALAHAD NEGATIVE: all multipliers corresponding to active inequality constraints are non-positive for lower
bound constraints and non-negative for upper bounds constraints.

The default isy sign = GALAHAD POSITIVE.

inactive y is a scalar variable of type defaultINTEGER, that determines whether or not the multipliers corresponding
to general linear constraints that are inactive at the unreduced point corresponding to the reduced point on input
of PRESOLVE restore must be set to zero. Possible values are:

GALAHAD FORCE TO ZERO: all multipliers corresponding to inactive general linear constraints are forced to
zero, possibly at the expense of deteriorating the dual feasibility condition. Note that this option is inactive
unlessget y = get c get c bounds = .TRUE..

GALAHAD LEAVE AS IS: multipliers corresponding to inactive general linear constraints are left unaltered.

The default isinactive y = GALAHAD LEAVE AS IS.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

8 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

z sign is a scalar variable of type defaultINTEGER, that determines the convention of sign used for the dual variables
associated with the bound constraints. Possible values are:

GALAHAD POSITIVE: all dual variables corresponding to active lower bounds arenon-negative, and non-positive
for active upper bounds;

GALAHAD NEGATIVE: all dual variables corresponding to active lower bounds arenon-positive, and non-negative
for active upper bounds.

The default isz sign = GALAHAD POSITIVE.

inactive z is a scalar variable of type defaultINTEGER, that determines whether or not the dual variables corre-
sponding to bound constraints that are inactive at the unreduced point corresponding to the reduced point on
input ofPRESOLVE restore must be set to zero. Possible values are:

GALAHAD FORCE TO ZERO: all dual variables corresponding to inactive bounds are forced to zero, possibly at
the expense of deteriorating the dual feasibility condition. Note that this option is inactive unlessget z =
get x get x bounds = .TRUE..

GALAHAD LEAVE AS IS: dual variables corresponding to inactive bounds are left unaltered.

The default isinactive z = GALAHAD LEAVE AS IS.

final x bounds is a scalar variable of type defaultINTEGER, that holds the type of final bounds on the variables
returned by the package. This parameter can take the values:

GALAHAD TIGHTEST: the final bounds are the tightest bounds known on the variables (at the risk of being re-
dundant with other constraints, which may cause degeneracy);

GALAHAD NON DEGENERATE: the best known bounds that are known to be non-degenerate. This option implies
that an additional real workspace of size2 * problem%n must be allocated;

GALAHAD LOOSEST: the loosest bounds that are known to keep the problem equivalent to the original problem.
This option also implies that an additional real workspace of size2 * problem%n must be allocated;

Note that his parameter must be identical for all calls toPRESOLVE following PRESOLVE read specfile. The
default isfinal x bounds = GALAHAD TIGHTEST.

final z bounds is a scalar variable of type defaultINTEGER, that holds the type of final bounds on the dual variables
returned by the package. This parameter can take the values:

GALAHAD TIGHTEST: the final bounds are the tightest bounds known on the dual variables (at the risk of being
redundant with other constraints, which may cause degeneracy);

GALAHAD NON DEGENERATE: the best known bounds that are known to be non-degenerate. This option implies
that an additional real workspace of size2 * problem%n must be allocated;

GALAHAD LOOSEST: the loosest bounds that are known to keep the problem equivalent to the original problem.
This option also implies that an additional real workspace of size2 * problem%n must be allocated;

Note that his parameter must be identical for all calls toPRESOLVE following PRESOLVE read specfile. The
default isfinal z bounds = GALAHAD TIGHTEST.

final c bounds is a scalar variable of type defaultINTEGER, that holds the type of final bounds on the constraints
returned by the package. This parameter can take the values:

GALAHAD TIGHTEST: the final bounds are the tightest bounds known on the constraints (at the risk of being
redundant with other constraints, which may cause degeneracy);

GALAHAD NON DEGENERATE: the best known bounds that are known to be non-degenerate. This option implies
that an additional real workspace of size2 * problem%n must be allocated;

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 9

PRESOLVE GALAHAD

GALAHAD LOOSEST: the loosest bounds that are known to keep the problem equivalent to the original problem.
This option also implies that an additional real workspace of size2 * problem%n must be allocated;

Note that his parameter must be identical for all calls toPRESOLVE following PRESOLVE read specfile. If
different fromTIGHTEST, its value must be equal to that offinal x bounds. The default isfinal c bounds =
GALAHAD TIGHTEST.

final y bounds is a scalar variable of type defaultINTEGER, that holds the type of final bounds on the multipliers
returned by the package. This parameter can take the values:

GALAHAD TIGHTEST: the final bounds are the tightest bounds known on the multipliers (at the risk of being
redundant with other constraints, which may cause degeneracy);

GALAHAD NON DEGENERATE: the best known bounds that are known to be non-degenerate. This option implies
that an additional real workspace of size2 * problem%n must be allocated;

GALAHAD LOOSEST: the loosest bounds that are known to keep the problem equivalent to the original problem.
This option also implies that an additional real workspace of size2 * problem%n must be allocated;

Note that his parameter must be identical for all calls toPRESOLVE following PRESOLVE read specfile. The
default isfinal y bounds = GALAHAD TIGHTEST.

check primal feasibility is a scalar variable of type defaultINTEGER, that holds the level of feasibility check (on
the values ofx) at the start of the restoration phase. This parameter can take the values:

GALAHAD NONE: no check at all;

GALAHAD BASIC: the primal constraints are recomputed atx and a message issued if the computed value does
not match the input value, or if it is out of bounds (ifprint level ≥ GALAHAD ACTION);

GALAHAD SEVERE: the same as forGALAHAD BASIC, but PRESOLVE is terminated if an incompatibilty is de-
tected.

The default ischeck primal feasibility = GALAHAD NONE.

check dual feasibility is a scalar variable of type defaultINTEGER, that holds the level of dual feasibility check
(on the values ofx, y andz) at the start of the restoration phase. This parameter can take the values:

GALAHAD NONE: no check at all;

GALAHAD BASIC: the primal constraints are recomputed at(x,y,z) and a message issued if the computed value
does not match the input value, or if it is out of bounds (ifprint level ≥ GALAHAD ACTION);

GALAHAD SEVERE: the same as forGALAHAD BASIC, but PRESOLVE is terminated if an incompatibilty is de-
tected.

The default ischeck dual feasibility = GALAHAD NONE.

get q is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the value of the objective function must
be reconstructed byPRESOLVE restore from the (solved) reduced problem. The default isget q = .TRUE..

get f is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the value of the objective function’s
independent term is to be be reconstructed byPRESOLVE restore from the (solved) reduced problem. The
default isget f = .TRUE..

get g is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the values of the objective function’s
gradient is to be be reconstructed byPRESOLVE restore from the (solved) reduced problem. The default is
get g = .TRUE..

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

10 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

get H is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the values of the objective function’s
Hessian is to be be reconstructed byPRESOLVE restore from the (solved) reduced problem. The default is
get H = .TRUE..

get A is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the values of the constraints’ Jacobian
is to be be reconstructed byPRESOLVE restore from the (solved) reduced problem. The default isget A =
.TRUE..

get x is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the value of the variables must be
reconstructed byPRESOLVE restore from the (solved) reduced problem. The default isget x = .TRUE..

get x bounds is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the values of the bounds on
the problem variables must be reconstructed byPRESOLVE restore from the (solved) reduced problem. The
default isget x bounds = .TRUE..

get z is a scalar variable of type defaultLOGICAL, that must be set to tt .TRUE. if the value of the dual variables must
be reconstructed byPRESOLVE restore from the (solved) reduced problem. The default isget z = .TRUE..

get z bounds is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the values of the bounds on
the problem dual variables must be reconstructed byPRESOLVE restore from the (solved) reduced problem. If
set, this may require to store specific additional information on the problem transformations, therefore increasing
the storage needed for these transformations. Note that this parameter must be identical for all calls toPRESOLVE
following PRESOLVE read specfile. The default isget z bounds = .TRUE..

get c is a scalar variable of type defaultLOGICAL, that must be set to tt .TRUE. if the values of the constraintsmust
be reconstructed byPRESOLVE restore from the (solved) reduced problem. The default isget c = .TRUE..

get c bounds is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the values of the bounds on
the problem constraints must be reconstructed byPRESOLVE restore from the (solved) reduced problem. The
default isget c bounds = .TRUE..

get y is a scalar variable of type defaultLOGICAL, that must be set to tt .TRUE. if the values of the multipliersmust
be reconstructed byPRESOLVE restore from the (solved) reduced problem. The default isget y = .TRUE..

get y bounds is a scalar variable of type defaultLOGICAL, that must be set to.TRUE. if the values of the bounds on
the problem multipliers must be reconstructed byPRESOLVE restore from the (solved) reduced problem. If set,
this may require to store specific additional information onthe problem transformations, therefore increasing
the storage needed for these transformations. Note that this parameter must be identical for all calls toPRESOLVE
following PRESOLVE read specfile. The default isget y bounds = .TRUE..

pivot tol is a scalar variable of type defaultREAL (double precision inGALAHAD PRESOLVE double), that holds the
relative pivot tolerance above which pivoting is considered as numerically stable in transforming the coefficient
matrix A. A zero value corresponds to a totally unsafeguarded pivoting strategy (potentially unstable). The
default ispivot tol = 10−6 in single precision, andpivot tol = 10−10 in double precision.

min rel improve is a scalar variable of type defaultREAL (double precision inGALAHAD PRESOLVE double), that
holds the minimum relative improvement in the bounds onx, y andz for a tighter bound on these quantities to
be accepted in the course of the analysis. More formally, iflower is the current value of the lower bound on one
of thex, y or z, and ifnewlower is a tentative tighter lower bound on the same quantity, it isonly accepted if

newlower≥ lower+min rel improve∗max(1, |lower|).

Similarly, a tentative tighter upper boundnewupper only replaces the current upper boundupper if

newupper≤ upper−min rel improve∗max(1, |upper|).

Note that this parameter must exceed the machine precision significantly. The default ismin rel improve =
10−6 in single precision, andmin rel improve = 10−10 in double precision.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 11

PRESOLVE GALAHAD

max growth factor is a scalar variable of type defaultREAL (double precision inGALAHAD PRESOLVE double), that
holds the maximum ratio that is allowed for the absolute value of any data item of the reduced problem compared
to the maximum absolute value of any data item of the originalproblem. In the course of the presolving process,
any transformation that would result in violating this bound is skipped. The default ismin growth factor =
104 in single precision, andmin growth factor = 108 in double precision.

2.3.4 The derived data type for holding informational parameters

The derived data typePRESOLVE inform type is used to hold parameters that give information about the progress and
needs of the algorithm. The components ofPRESOLVE inform type are:

status is a scalar variable of type defaultINTEGER, that gives the exit status of the algorithm. See Sections 2.5 and
2.7 for details.

message is a character array of 3 lines of 80 characters each, containing a description of the exit condition on exit,
typically including more information than indicated in thedescription ofstatus above. It is printed out on
deviceerrout at the end of execution unlessprint level is GALAHAD SILENT.

nbr transforms is a scalar variable of type defaultINTEGER, that gives the the final number of problem transforma-
tions, as reported to the user at exit.

2.3.5 The derived data type for holding problem data

The derived data typePRESOLVE data type is used to hold all the data for a particular problem, or sequences of
problems with the same structure, between calls ofPRESOLVE procedures. This data should be preserved, untouched,
from the initial call toPRESOLVE initialize to the final call toPRESOLVE terminate.

2.4 Argument lists and calling sequences

There are five procedures for user calls (see Section 2.6 for further features):

1. The subroutinePRESOLVE initialize is used to set default values, and initialize private data, before presolving
one or more problems with the same sparsity and bound structure.

2. The subroutinepackagename read specfile is used to read thepackagename specfile in order to possibly
modify the algoritmic default parameters (see Section 2.6.1).

3. The subroutinePRESOLVE apply is called to presolve the problem, that is to reduce it by applying suitable
problem transformations and permute it to standard form.

4. The subroutinePRESOLVE restore restores the (solved) reduced problem to the original definition of variables
and constraints;

5. The subroutinePRESOLVE terminate is provided to allow the user to automatically deallocate array compo-
nents of the private data, allocated byPRESOLVE, at the end of the solution process. It is important to do thisif
the data object is re-used for another problemwith a different structure sincePRESOLVE initialize cannot
test for this situation, and any existing associated targets will subsequently become unreachable.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

12 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

2.4.1 The initialization subroutine

Default values for the control parameters are provided as follows:

CALL PRESOLVE initialize(control, inform, data)

control is a scalarINTENT(OUT) argument of typePRESOLVE control type (see Section 2.3.3). On exit,control
contains default values for the components as described in Section 2.3.3. These values should only be changed
after callingPRESOLVE initialize.

inform is a scalarINTENT(OUT) argument of typePRESOLVE inform type (see Section 2.3.4). A successful call to
the routinePRESOLVE initialize is indicated when the componentstatus has the value 0. For other return
values ofstatus, see Section 2.5.

data is a scalarINTENT(INOUT) argument of typePRESOLVE data type (see Section 2.3.5). It is used to hold data
about the problem being solved. It should never be altered bythe user.

2.4.2 The subroutine that applies presolving transformations to the problem

The presolving algorithm is called as follows:

CALL PRESOLVE apply(problem, control, inform, data)

Such a call must always be preceded by a call toPRESOLVE initialize.

problem is a scalarINTENT(OUT) argument of typeQPT problem type (see Section 2.3.2) that contains the problem
statement. It is used to hold data about the problem being solved. Users are free to choose whichever of the three
matrix formats described in Section 2.1 is appropriate forA andH for their application. Some components of
the problem structure need not be allocated, in which case they will be assigned suitable default values. These
components, their size and the associated default values are given in Table 2.1. If the arrayproblem%X status

component size default component size default
X l n −∞ C l m −∞
X u n +∞ C u m +∞
X n (problem dependent) C m (problem dependent)
X status n GALAHAD ACTIVE C status m GALAHAD ACTIVE

Z l n −∞ Y l m −∞
Z u n +∞ Y u m +∞
Z n (problem dependent) Y m (problem dependent)

Table 2.1: Defaults for unallocated array components ofproblem.

is allocated on entry, then possible value of itsj-th component are as follows:

GALAHAD INACTIVE: the j-th variable is inactive in the sense that the quadratic program under consideration
ignores it (this is equivalent of fixingx j to problem%X(j); which obviously requiresproblem%X to be
allocated);

GALAHAD ACTIVE: the j-th variable is active (i.e. not inactive).

The meaning of thei-th component ofproblem%C status is identical, except that it relates to thei-th constraint:

GALAHAD INACTIVE: the i-th constraint is inactive in the sense that the quadratic program under consideration
ignores it;

GALAHAD ACTIVE: the j-th variable is active (i.e. not inactive).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 13

PRESOLVE GALAHAD

On exit, the problem structure will contain the reduced problem, with its Hessian and Jacobian matrices
stored in sparse row-wise format. Values forx, z, c, y andq will be provided, that are feasible for the reduced
problem. Note that not all the memory reserved for the original problem is typically used by the reduced one.
However, crucial information that is necessary to restore the problem to its original variables/constraints remains
stored in the problem structure, beyond that specified by thedimensions of the reduced problem. Thus modifica-
tion (for instance by a QP algorithm) of the reduced problem data is possible (except forproblem%X status and
problem%C status, which should always remain unchanged), but no other data within the problem structure
should be altered before callingPRESOLVE restore.

control is a scalarINTENT(IN) argument of typePRESOLVE control type (see Section 2.3.3). Default values may
be assigned by callingPRESOLVE initialize prior to the first call toPRESOLVE apply.

info is a scalarINTENT(OUT) argument of typePRESOLVE inform type (see Section 2.3.4). A successful call to the
routinePRESOLVE apply is indicated when the componentstatus has the value 0. For other return values of
status, see Section 2.5.

data is a scalarINTENT(INOUT) argument of typePRESOLVE data type (see Section 2.3.5). It is used to hold data
about the problem being solved. It must never be altered by the user since the last call to any of thePRESOLVE
routines.

2.4.3 The restoration subroutine

The (solved) reduced problem is restored in the original variables/constraints and matrix format by calling

CALL PRESOLVE restore(problem, control, inform, data)

The choice of which components of the problem to restore is governed by the different%get * components of the
control structure (see Section 2.3.3).

problem is a scalarINTENT(INOUT) argument of typeQPT problem type (see Section 2.3.2). On entry, it is used to
hold data about the solved reduced problem. The values ofproblem%X status andproblem%C status should
not have been altered since the exit fromPRESOLVE apply.

On exit, the problem structure will contain selected components of the solved problem restored to the original
variables/constraints and/or matrix format. The selection of these elements is specified by setting theget *
components of thecontrol dummy argument (see Section 2.3.3).

control is a scalarINTENT(IN) argument of typePRESOLVE control type (see Section 2.3.3). In particular, its
get * components specify which elements of the (solved) reduced problem must be restored to the original
formulation.

info is a scalarINTENT(OUT) argument of typePRESOLVE inform type (see Section 2.3.4). A successful call to the
routinePRESOLVE restoire is indicated when the componentstatus has the value 0. For other return values
of status, see Section 2.5.

data is a scalarINTENT(INOUT) argument of typePRESOLVE data type (see Section 2.3.5). It is used to hold data
about the problem being solved. It must not have been alteredby the user since the last call to any of the
PRESOLVEroutines.

2.4.4 The termination subroutine

All previously allocated workspace arrays for PRESOLVE aredeallocated as follows:

CALL PRESOLVE terminate(control, info, data)

control is a scalarINTENT(IN) argument of typePRESOLVE control type exactly as forPRESOLVE initialize.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

14 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

info is a scalarINTENT(OUT) argument of typePRESOLVE inform type exactly as forPRESOLVE initialize. A
successful call toPRESOLVE terminate is indicated when the componentstatus has the value 0. For other
return values ofstatus, see Section 2.5.

data is a scalarINTENT(INOUT) argument of typePRESOLVE data type exactly as forPRESOLVE solve, which must
not have been altered by the user since the last call toPRESOLVE initialize. On exit, array components will
have been deallocated.

Note that a call to this routine is mandatory beforePRESOLVE apply is called for a new quadratic program whose
structure differs from the current one.

2.5 Warning and error messages

A negative value ofinfo%status on exit fromPRESOLVE initialize, PRESOLVE read specfile, PRESOLVE apply,
PRESOLVE restore, or PRESOLVE terminate indicates that an error has occurred. No further calls should be made
to the four three of these routines until the error has been corrected. Possible values are:

1. The maximum number of problem transformation has been reached. Note that this exit is not really an error,
since the problem can nevertheless be permuted and solved. It merely signals that further problem reduction
could possibly be obtained with a larger value of the parametermax nbr transforms.

-1. The memory allocation failed.

-2. A file intended for saving problem transformations could notbe opened.

-3. An IO error occurred while saving transformations on the relevant disk file.

-4. The machine/compiler only supports less than 8 bits in a single integer (this error is thus very unlikely).

-21. The problem appears to be primal infeasible.

-22. The problem appears to be dual infeasible.

-23. The dimension of the gradientproblem%G is not equal to the number of variables in the problemproblem%n.

-24. The dimension of the vectorproblem%H val containing the entries of the Hessian is erroneously specified.

-25. The dimension of the vectorproblem%H ptr containing the addresses of the first entry of each Hessian row is
erroneously specified.

-26. The dimension of the vectorproblem%H col containing the column indices of the nonzero Hessian entries is
erroneously specified.

-27. The dimension of the vectorproblem%H row containing the row indices of the nonzero Hessian entries iserro-
neously specified.

-28. The dimension of the vectorproblem%A val containing the entries of the Jacobian is erroneously specified.

-29. The dimension of the vectorproblem%A ptr containing the addresses of the first entry of each Jacobian row is
erroneously specified.

-30. The dimension of the vectorproblem%A col containing the column indices of the nonzero Jacobian entries is
erroneously specified.

-31. The dimension of the vectorproblem%A row containing the row indices of the nonzero Jacobian entries is
erroneously specified;

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 15

PRESOLVE GALAHAD

-32. The dimension of the vectorproblem%X of variables is incompatible with the problem dimensionproblem%n.

-33. The dimension of the vectorproblem%X l of lower bounds on the variables is incompatible with the problem
dimensionproblem%n.

-34. The dimension of the vectorproblem%X u of upper bounds on the variables is incompatible with the problem
dimensionproblem%n.

-35. The dimension of the vectorproblem%Z of dual variables is incompatible with the problem dimensionproblem%n.

-36. The dimension of the vectorproblem%Z l of lower bounds on the dual variables is incompatible with the
problem dimensionproblem%n.

-37. The dimension of the vectorproblem%Z u of upper bounds on the dual variables is incompatible with the
problem dimensionproblem%n.

-38. The dimension of the vectorproblem%C of constraints values is incompatible with the problem dimension
problem%m.

-39. The dimension of the vectorproblem%C l of lower bounds on the constraints is incompatible with the problem
dimensionproblem%m.

-40. The dimension of the vectorproblem%C u of upper bounds on the constraints is incompatible with the problem
dimensionproblem%m.

-41. The dimension of the vectorproblem%Y of multipliers values is incompatible with the problem dimension
problem%m.

-42. The dimension of the vectorproblem%Y l of lower bounds on the multipliers is incompatible with the problem
dimensionproblem%m.

-43. The dimension of the vectorproblem%Y u of upper bounds on the multipliers is incompatible with the problem
dimensionproblem%m.

-44. The problem structure has not been set or has been cleaned up before an attempt to applyPRESOLVE apply.

-45. The problem has not been analyzed before an attempt to permute it.

-46. The problem has not been permuted or fully reduced before an attempt to restore it.

-47. The column indices of a row of the sparse Hessian are not in increasing order, in that they specify an entry above
the diagonal.

-48. One of the files containing saved problem transformations has been corrupted between writing and reading.

-49. The dimension of the vectorproblem%X status of variables’ status is incompatible with the problem dimension
problem%n.

-50. The dimension of the vectorproblem%C status of constraints’ status is incompatible with the problem dimen-
sionproblem%m.

-52. The problem does not contain any (active) variable (problem%n ≤ 0).

-53. The problem contains a negative number of constraints (problem%m < 0).

-54. The vectors are too long for the quicksort sorting routine (see the GALAHAD SORT module).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

16 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

-55. The value of a variable that is obtained inPRESOLVE restore by substitution from a constraint is incoherent
with the variable’s bounds. This may be due to a relatively loose accuracy on the linear constraints. Try to
increasecontrol%c accuracy.

-56. The value of a constraint that is obtained by recomputing itsvalue on input ofPRESOLVE restore from the
currentx is incompatible with its declared value or its bounds. This may caused the restored problem to be
infeasible.

-57. The value of a dual variable that is obtained by recomputing its value on input ofPRESOLVE restore (assuming
dual feasibility) from the current values of(x,y,z) is incompatible with its declared value. This may caused the
restored problem to be infeasible or suboptimal.

-58. A dual variable whose value is nonzero because the corresponding primal is at an artificial bound cannot be
zeroed while maintaining dual feasibility (inPRESOLVE restore). This can happen when(x,y,z) on input of
this routine are not (sufficiently) optimal.

-60. A keyword was not recognized in the analysis of the specification file.

-61. A value was not recognized in the analysis of the specification file.

-63. The vectorproblem%G has not been allocated although it has general values.

-65. The vectorproblem%A val has not been allocated althoughproblem%m > 0.

-66. The vectorproblem%A ptr has not been allocated althoughproblem%m > 0 andA is stored in row-wise sparse
format.

-67. The vectorproblem%A col has not been allocated althoughproblem%m > 0 andA is stored in row-wise sparse
format or sparse coordinate format.

-68. The vectorproblem%A row has not been allocated althoughproblem%m > 0 andA is stored in sparse coordinate
format.

-69. The vectorproblem%H val has not been allocated althoughproblem%H ne = −2 or problem%H ne = −1 or
problem%H ne > 0.

-70. The vectorproblem%H ptr has not been allocated althoughH is stored in row-wise sparse format.

-71. The vectorproblem%H col has not been allocated althoughH is stored in row-wise sparse format orproblem%H ne
> 0 andH is stored sparse coordinate format.

-72. The vectorproblem%H row has not been allocated althoughproblem%H ne > 0 andH is stored in sparse coor-
dinate format.

-73. The value of problem%Ane is erroneously specified.

-74. The value of problem%Hne is erroneously specified.

2.6 Further features

In this section, we describe an alternative means of settingcontrol parameters, that is components of the variable
control of typePRESOLVE control type (see Section 2.3.3), by reading an appropriate data specification file using
the subroutinePRESOLVE read specfile. This facility is useful as it allows a user to changePRESOLVE control
parameters without editing and recompiling programs that call PRESOLVE.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command
occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 17

PRESOLVE GALAHAD

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.
All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not
contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more
than 30 characters, and each line of the specfile is limited to80 characters, including the blanks separating keyword
and value.

The portion of the specification file used byPRESOLVE read specfile must start with a ”BEGIN PRESOLVE”
command and end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by PRESOLVE_read_specfile ..)
BEGIN PRESOLVE

keyword value
.......
keyword value

END
(.. lines ignored by PRESOLVE_read_specfile ..)

wherekeyword and tt value are two strings separated by (at least) one blank. The “BEGIN PRESOLVE” and “END”
delimiter command lines may contain additional (trailing)strings so long as such strings are separated by one or more
blanks, so that lines such as

BEGIN PRESOLVE SPECIFICATION

and

END PRESOLVE SPECIFICATION

are acceptable. Furthermore, between the “BEGIN PRESOLVE” and “END” delimiters, specification commands may
occur in any order. Blank lines and lines whose first non-blank character is! or * are ignored. The content of a line
after a! or * character is also ignored (as is the! or * character itself). This provides an easy manner to ”comment
out” some specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of five different types, namely integer, logical, real, string or symbol.
Integer and real values may be expressed in any relevant Fortran integer and floating-point formats (respectively).
Permitted values for logical parameters are ”ON”, ” TRUE”, ” .TRUE.”, ” T”, ” YES”, ” Y”, or ”OFF”, ” NO”, ” N”, ” FALSE”,
”.FALSE.” and ”F”. Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.
String are specified as a sequence of characters. A symbolic value is a special string obtained from one of the
predefined symbols of the SYMBOLS module by deleting the leading GALAHAD characters in its name. Thus, the
specification command

termination REDUCED_SIZE

im plies that the valueGALAHAD REDUCED SIZE is assigned tocontrol%termination. This technique is intended to
help expressing an (integer) control parameter for an algorithm in a ”language” that is close to natural (see Section 2.2).

The specification file must be open for input whenPRESOLVE read specfile is called, and the associated device
number passed to the routine in device (see below). Note thatthe corresponding file isREWINDed, which makes it
possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed
by PRESOLVE read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL PRESOLVE_read_specfile(device, control, inform)

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

18 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

device is a scalarINTENT(IN)argument of type defaultINTEGER, that must be set to the unit number on which the
specfile has been opened. Ifdevice is not open,control will not be altered and execution will continue, but
an error message will be printed on unitcontrol%error.

control is a scalarINTENT(INOUT)argument of typePRESOLVE control type (see Section 2.3.3). Default values
should have already been set, perhaps by callingPRESOLVE initialize. On exit, individual components of
control may have been changed according to the commands found in the specfile. Specfile commands and the
component (see Section 2.3.3) ofcontrol that each affects are given in Tables 2.2–2.3.

inform is a scalarINTENT(OUT) argument of typePRESOLVE inform type (see Section 2.3.4).

2.7 Information printed

The meaning of the variouscontrol%print level values is defined as follows:

GALAHAD SILENT: no printout is produced,

GALAHAD TRACE: only reports the major steps in the analysis, that is headersof the main preprocessing phases and,
for each pass, the number of transformations of each type applied,

GALAHAD ACTION: reports the nature of each problem transformation,

GALAHAD DETAILS: reports more details on each of the main presolving loop constituents,

GALAHAD DEBUG: reports LOTS of information, including information on unsuccessful attempts to apply presolving
transformations,

GALAHAD CRAZY: reports a completely silly amount of information.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: PRESOLVE calls theGALAHAD modulesGALAHAD SMT, GALAHAD QPT, GALAHAD SPECFILE,
GALAHAD SORT, andGALAHAD SYMBOLS.

Input/output: Output is under control of the argumentscontrol%error, control%out andcontrol%print level.

Restrictions: prob%n> 0,prob%m≥ 0,prob%A type andprob%H type ∈{’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’}.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solutionx of the problem necessarily satisfies the primal optimality conditions

Ax = c

and
cl ≤ c≤ cu, xl ≤ x ≤ xu,

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 19

PRESOLVE GALAHAD

the dual optimality conditions

Hx +g= AT y+ z, y = yl + yu and z= zl + zu,

and
yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(Ax − cl)T yl = 0, (Ax − cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the vectorsy andz are known as the Lagrange multipliers for the general linearconstraints, and the dual vari-
ables for the bounds, respectively, and where the vector inequalities hold componentwise. The purpose of presolving
is to exploit these equations in order to reduce the problem to the standard form defined as follows:

• The variables are ordered so that their bounds appear in the order

free x
non-negativity 0 ≤ x
lower xl ≤ x
range xl ≤ x ≤ xu

upper x ≤ xu

non-positivity x ≤ 0

Fixed variables are removed. Within each category, the variables are further ordered so that those with non-zero
diagonal Hessian entries occur before the remainder.

• The constraints are ordered so that their bounds appear in the order

non-negativity 0 ≤ Ax
equality cl = Ax
lower cl ≤ Ax
range cl ≤ Ax ≤ cu

upper Ax ≤ cu

non-positivity Ax ≤ 0

Free constraints are removed.

• In addition, constraints may be removed or bounds tightened, to reduce the size of the feasible region or simplify
the problem if this is possible, and bounds may be tightened on the dual variables and the multipliers associated
with the problem.

The presolving algorithm proceeds by applying a (potentially long) series of simple transformations to the problem,
each transformation introducing a further simplification of the problem. These involve the removal of empty and
singleton rows, the removal of redundant and forcing primalconstraints, the tightening of primal and dual bounds, the
exploitation of linear singleton, linear doubleton and linearly unconstrained columns, the merging dependent variables,
row sparsification and split equalities. Transformations are applied in successive passes, each pass involving the
following actions:

1. remove empty and singletons rows,

2. try to eliminate variables that are linearly unconstrained,

3. attempt to exploit the presence of linear singleton columns,

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

20 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

4. attempt to exploit the presence of linear doubleton columns,

5. complete the analysis of the dual constraints,

6. remove empty and singletons rows,

7. possibly remove dependent variables,

8. analyze the primal constraints,

9. try to makeA sparser by combining its rows,

10. check the current status of the variables, dual variables and multipliers.

All these transformations are applied on the structure of the original problem, which is only permuted to standard
form after all transformations are completed.Note that the Hessian and Jacobian of the resulting reduced problem are
always stored in sparse row-wise format. The reduced problem is then solved by a quadratic or linear programming
solver, thus ensuring sufficiently small primal-dual feasibility and complementarity. Finally, the solution of the simpli-
fied problem is re-translated in the variables/constraints/format of the original problem formulation by a “restoration”
phase.

If the number of problem transformations exceedscontrol%transf buffer size, the transformation buffer
size (see Section 2.3.3), then they are saved in a “history” file, whose name may be chosen by specifying the
control%transf file name control parameter (see Section 2.3.3). When this is the case, this file is subsequently
reread byPRESOLVE restore. It must not be altered by the user.

At the overall level, the presolving process follows one of the two sequences:

initialize →

[

apply transformations→ (solve problem)→ restore

]

→ terminate

or

initialize →

[

read specfile→ apply transformations→ (solve problem)→ restore

]

→ terminate

where the procedure’s control parameter may be modified by reading the specfile (see Section 2.6), and where (solve
problem) indicates that the reduced problem is solved. Eachof the “boxed” steps in these sequences corresponds to
calling a specific routine of the package (see Section 2.4). In the above diagrams, brackated subsequence of steps
means that they can be repeated with problem having the same structure. The value of thenew problem structure
component ofproblem must be.TRUE. on entry ofPRESOLVE apply on the first time it is used in this repeated
subsequence. Such a subsequence must be terminated by a callto PRESOLVE terminate before presolving is applied
to a problem with a different structure.

Note that the values of the multipliers and dual variables (and thus of their respective bounds) depend on the
functional form assumed for the Lagrangian function associated with the problem. This form is given by

L(x,y,z) = q(x)−y sign∗ yT (Ax − c)−z sign∗ z,

(considering only active constraintsAx = c), where the parametersy sign andz sign are +1 or -1 and can be chosen
by the user. Thus, ify sign = +1, the multipliers associated to active constraints originally posed as inequalities
are non-negative if the inequality is a lower bound and non-positive if it is an upper bound. Obvioulsy they are not
constrained in sign for constraints originally posed as equalities. These sign conventions are reversed ify sign =
-1. Similarly, if z sign = +1, the dual variables associated to active bounds are non-negative if the original bound
is an lower bound, non-positive if it is an upper bound, or unconstrained in sign if the variables is fixed; and this

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 21

PRESOLVE GALAHAD

convention is reversed inz sign = -1. The values ofz sign andy sign may be chosen by setting the corresponding
components of thecontrol structure toGALAHAD POSITIVE or GALAHAD NEGATIVE (see Section 2.3.3).

References:
The algorithm is described in more detail in

N. I. M. Gould and Ph. L. Toint (2004). Presolving for quadratic programming. Mathematical Programming100(1),
pp 95–132.

5 EXAMPLE OF USE

Suppose that we wish to solve the quadratic program (1.1)–(1.3) with the datan = 6, m = 5, f = 1, g= (1 1 1 1 1 1)T ,

H =

















1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, A =













0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 0
0 0 1 0 0 1
0 0 0 1 1 1













,

xl = (0 0 0 0 0 0)T , xu = (1 1 1 1 1 1)T , cl = (0 0 2 1 3)T andcu = (1 1 3 3 3)T , using the quadratic programming
solverQPSOLVER after applying the PRESOLVE package and then restoring the final solution to the original vari-
able formulation. We may use the following code—note that werequire some output from PRESOLVE by setting
control%print level to theGALAHAD TRACE symbol, and that callingQPSOLVER is actually unnecessary since the
problem of our example is completely reduced to a single feasible point (which must then be the solution) after pre-
solving.

PROGRAM GALAHAD_PRESOLVE_EXAMPLE
USE GALAHAD_QPT_double ! Double precision
USE GALAHAD_PRESOLVE_double ! Double precision
USE GALAHAD_SYMBOLS ! The GALAHAD symbols
IMPLICIT NONE
INTEGER, PARAMETER :: wp = KIND(1.0D0) ! Set precision
REAL (KIND = wp), PARAMETER :: infinity = 10._wp ** 20
REAL (KIND = wp), PARAMETER :: r0 = 0.0_wp, r1 = 1.0_wp
REAL (KIND = wp), PARAMETER :: r2 = 2.0_wp, r3 = 3.0_wp
TYPE (QPT_problem_type) :: problem
TYPE (PRESOLVE_control_type) :: control
TYPE (PRESOLVE_inform_type) :: inform
TYPE (PRESOLVE_data_type) :: data
INTEGER :: j, n, m, a_ne, h_ne

! start problem data
n = 6; m = 5; h_ne = 1; a_ne = 8
problem%new_problem_structure = .TRUE.
problem%n = n; problem%m = m; problem%f = r1
ALLOCATE(problem%G(n) , problem%X_l(n), problem%X_u(n))
ALLOCATE(problem%C_l(m), problem%C_u(m))
problem%gradient_kind = 1
problem%C_l = (/ r0, r0, r2, r1, r3 /)
problem%C_u = (/ r1, r1, r3, r3, r3 /)
problem%X_l = (/ -r3, r0, r0, r0, r0, r0 /)
problem%X_u = (/ r3, r1, r1, r1, r1, r1 /)

! sparse coordinate format

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

22 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

CALL SMT_put(problem%H%type, ’COORDINATE’)
CALL SMT_put(problem%A%type, ’COORDINATE’)
ALLOCATE(problem%H%val(h_ne))
ALLOCATE(problem%H%col(h_ne), problem%H%row(h_ne))
ALLOCATE(problem%A%val(a_ne))
ALLOCATE(problem%A%col(a_ne), problem%A%row(a_ne))
problem%H%val = (/ r1 /)
problem%H%row = (/ 1 /)
problem%H%col = (/ 1 /)
problem%A%val = (/ r1, r1, r1, r1, r1, r1, r1, r1 /)
problem%A%row = (/ 3, 3, 3, 4, 4, 5, 5, 5 /)
problem%A%col = (/ 3, 4, 5, 3, 6, 4, 5, 6 /)
problem%a_ne = a_ne; problem%h_ne = h_ne

! problem data complete
! write the original formulation

CALL QPT_write_problem(6, problem)
! set the default PRESOLVE control parameters

CALL PRESOLVE_initialize(control, inform, data)
IF (inform%status /= 0) STOP
control%print_level = GALAHAD_TRACE ! Ask for some output

! apply presolving to reduce the problem
CALL PRESOLVE_apply(problem, control, inform, data)
IF (inform%status /= 0) STOP

! write the reduced problem
CALL QPT_write_problem(6, problem)

! solve the reduced problem
! CALL QPSOLVER (unnecessary here, because the reduced problem has a
! single feasible point in this example)

! restore the solved reduced problem to the original formulation
CALL PRESOLVE_restore(problem, control, inform, data)
IF (inform%status /= 0) STOP

! write the final solution in the original variables
WRITE(6, *) ’ ’
WRITE(6, *) ’ The problem solution X is’
WRITE(6, *) ’ ’
DO j = 1, n

WRITE(6, ’(3x,’’x(’’,I1,’’) = ’’, ES12.4)’) j, problem%X(j)
END DO

! deallocate internal workspace
CALL PRESOLVE_terminate(control, inform, data)
END PROGRAM GALAHAD_PRESOLVE_EXAMPLE

This produces the following output:

=============== PROBLEM =====================

n = 6

variables

lower upper

x(1) = -3.0000E+00 3.0000E+00
x(2) = 0.0000E+00 1.0000E+00
x(3) = 0.0000E+00 1.0000E+00

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 23

PRESOLVE GALAHAD

x(4) = 0.0000E+00 1.0000E+00
x(5) = 0.0000E+00 1.0000E+00
x(6) = 0.0000E+00 1.0000E+00

m = 5

constraints

lower upper

c(1) = 0.0000E+00 1.0000E+00
c(2) = 0.0000E+00 1.0000E+00
c(3) = 2.0000E+00 3.0000E+00
c(4) = 1.0000E+00 3.0000E+00
c(5) = 3.0000E+00 3.0000E+00

Jacobian

A(3, 3) = 1.0000E+00
A(3, 4) = 1.0000E+00
A(3, 5) = 1.0000E+00
A(4, 3) = 1.0000E+00
A(4, 6) = 1.0000E+00
A(5, 4) = 1.0000E+00
A(5, 5) = 1.0000E+00
A(5, 6) = 1.0000E+00

objective function constant term = 1.0000E+00

gradient

g(1) = 1.0000E+00
g(2) = 1.0000E+00
g(3) = 1.0000E+00
g(4) = 1.0000E+00
g(5) = 1.0000E+00
g(6) = 1.0000E+00

Hessian

H(1, 1) = 1.0000E+00

============ END OF PROBLEM =================

**
* *
* GALAHAD presolve for QPs *
* *
* problem analysis *
* *
**

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

24 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

============ starting problem analysis ============

checking bounds on x, y, z, and c: 0 transformations
redundant variables and constraints: 0 transformations

============= main processing loop 1 =============
(n = 6 , m = 5 , a_ne = 8 , h_ne = 1)

removing empty and singleton rows: 2 transformations
analyzing special linear columns: 3 transformations
analyzing dual constraints: 0 transformations
removing empty and singleton rows: 0 transformations
checking dependent variables: 2 transformations
analyzing primal constraints: 5 transformations
checking bounds on x, y, z, and c: 0 transformations

============= main processing loop 2 =============
(n = 1 , m = 2 , a_ne = 2 , h_ne = 0)

removing empty and singleton rows: 2 transformations
analyzing special linear columns: 2 transformations

======== end of the main processing loop (loop = 2) ========

all variables and constraints have been eliminated!

No permutation necessary.

******************** Bye *******************

=============== PROBLEM =====================

n = 0

m = 0

current objective function value = 3.5000E+00

objective function constant term = 3.5000E+00

============ END OF PROBLEM =================

**
* *
* GALAHAD PRESOLVE for QPs *
* *
* problem restoration *
* *
**

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 25

PRESOLVE GALAHAD

verifying user-defined presolve control parameters
=== starting historical loop
=== end of the historical loop

Problem successfully restored.

******************** Bye *******************

The problem solution X is

x(1) = -1.0000E+00
x(2) = 0.0000E+00
x(3) = 0.0000E+00
x(4) = 1.0000E+00
x(5) = 1.0000E+00
x(6) = 1.0000E+00

**
* *
* GALAHAD PRESOLVE for QPs *
* *
* workspace cleanup *
* *
**

******************** Bye *******************

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse coordinate format
......

! problem data complete

by

! sparse row-wise storage format
CALL SMT_put(problem%H%type, ’SPARSE_BY_ROWS’)
CALL SMT_put(problem%A%type, ’SPARSE_BY_ROWS’)
ALLOCATE(problem%H%val(h_ne))
ALLOCATE(problem%H%ptr(n+1), problem%H%col(h_ne))
ALLOCATE(problem%A%val(a_ne))
ALLOCATE(problem%A%ptr(m+1), problem%A%col(a_ne))
problem%H%val = (/ r1 /)
problem%H%ptr = (/ 1, 2, 2, 2, 2, 2, 2 /)
problem%H%col = (/ 1 /)
problem%A%val = (/ r1, r1, r1, r1, r1, r1, r1, r1 /)
problem%A%ptr = (/ 1, 1, 1, 4, 6, 9 /)
problem%A%col = (/ 3, 4, 5, 3, 6, 4, 5, 6 /)

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

26 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

CALL SMT_put(problem%H%type, ’DENSE’)
CALL SMT_put(problem%A%type, ’DENSE’)
ALLOCATE(problem%H%val(n*(n+1)/2))
ALLOCATE(problem%A%val(n*m))
problem%H%val = (/ r1, &

r0, r0, &
r0, r0, r0, &
r0, r0, r0, r0, &
r0, r0, r0, r0, r0, &
r0, r0, r0, r0, r0, r0 /)

problem%A%val = (/ r0, r0, r0, r0, r0, r0, &
r0, r0, r0, r0, r0, r0, &
r0, r0, r1, r1, r1, r0, &
r0, r0, r1, r0, r0, r1, &
r0, r0, r0, r1, r1, r1 /)

! problem data complete

respectively. (If insteadH had been the diagonal matrix

H =





1
0

3





but the other data is as before, the diagonal storage scheme might be used forH, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’) ! Specify dense storage for H
ALLOCATE(p%H%val(n))
p%H%val = (/ r1, r0, r0, r0, r0, r0, r0 /) ! Hessian values

Notice here that zero diagonal entries are stored.) We couldalso make use of thePRESOLVE read specfile routine
to set the printing level, in which case the statement

control%print_level = GALAHAD_TRACE ! Ask for some output

is replaced by

! open specfile
OPEN(57, FILE = ’PRESOLVE.SPC’, STATUS = ’OLD’)

! read its content (asking for some output)
CALL PRESOLVE_read_specfile(57, control, inform)

! close it
CLOSE(57)

where we assume that the filePRESOLVE.SPC exists in the current directory and contains the lines

BEGIN PRESOLVE SPECIFICATION
print-level TRACE

END PRESOLVE SPECIFICATION

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 27

PRESOLVE GALAHAD

command component ofcontrol value type/
symbolic value

error-printout-device %error integer
printout-device %out integer
print-level %print level SILENT,

TRACE,
ACTION,
DETAILS,
DEBUG,
CRAZY

presolve-termination-strategy %termination REDUCED SIZE,
FULL PRESOLVE

maximum-number-of-transformations %max nbr transforms integer
maximum-number-of-passes %max nbr passes integer
constraints-accuracy %c accuracy real
dual-variables-accuracy %z accuracy real
allow-dual-transformations %dual transformations logical
remove-redundant-variables-constraints %redundant xc logical
primal-constraints-analysis-frequency %primal constraints freq integer
dual-constraints-analysis-frequency %dual constraints freq integer
singleton-columns-analysis-frequency %singleton columns freq integer
doubleton-columns-analysis-frequency %doubleton columns freq integer
unconstrained-variables-analysis-frequency %unc variables freq integer
dependent-variables-analysis-frequency %dependent variables freq integer
row-sparsification-frequency %sparsify rows freq integer
maximum-percentage-row-fill %max fill integer
transformations-buffer-size %transf buffer size integer
transformations-file-device %transf file nbr integer
transformations-file-status %transf file status KEEP,

DELETE
transformations-file-name %transf file name string
primal-feasibility-check %check primal feasibility NONE,

BASIC,
SEVERE

dual-feasibility-check %check dual feasibility NONE,
BASIC,
SEVERE

active-multipliers-sign %y sign POSITIVE,
NEGATIVE

inactive-multipliers-value %inactive y LEAVE AS IS,
FORCE TO ZERO

active-dual-variables-sign %z sign POSITIVE,
NEGATIVE

inactive-dual-variables-value %inactive z LEAVE AS IS,
FORCE TO ZERO

primal-variables-bound-status %final x bounds TIGHTEST,
NON DEGENERATE,
LOOSEST

Table 2.2: Specfile commands and associated components ofcontrol (part 1).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

28 PRESOLVE (May 8, 2013) GALAHAD

GALAHAD PRESOLVE

command component ofcontrol value type/
symbolic value

dual-variables-bound-status %final z bounds TIGHTEST,
NON DEGENERATE,
LOOSEST

constraints-bound-status %final c bounds TIGHTEST,
NON DEGENERATE,
LOOSEST

multipliers-bound-status %final y bounds TIGHTEST,
NON DEGENERATE,
LOOSEST

infinity-value %infinity real
pivoting-threshold %pivot tol real
minimum-relative-bound-improvement %min rel improve real
maximum-growth-factor %max growth factor real
compute-quadratic-value %get q logical
compute-objective-constant %get f logical
compute-gradient %get g logical
compute-Hessian %get H logical
compute-constraints-matrix %get A logical
compute-primal-variables-values %get x logical
compute-primal-variables-bounds %get x bounds logical
compute-dual-variables-values %get z logical
compute-dual-variables-bounds %get z bounds logical
compute-contraints-values %get c logical
compute-constraints-bounds %get c bounds logical
compute-multipliers-values %get y logical
compute-multipliers-bounds %get y bounds logical

Table 2.3: Specfile commands and associated components ofcontrol (part 2).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD PRESOLVE (May 8, 2013) 29

