
GALAHAD SCALE
USER DOCUMENTATION GALAHAD Optimization Library version 2.5

1 SUMMARY

This package calculates and appliesshift and scale factorsfor the variables and constraints to try to equiilibrate the
quadratic programming problem

minimize 1
2xT Hx +gTx+ f (1.1)

subject to the general linear constraints
cl

i ≤ aT
i x ≤ cu

i , i = 1, . . . ,m, (1.2)

and the simple bound constraints
xl

j ≤ x j ≤ xu
j , j = 1, . . . ,n, (1.3)

where then by n symmetric matrixH, the vectorsg, ai, cl , cu, xl , xu and the scalarf are given. Full advantage is taken
of any zero coefficients in the matrixH, as well as the matrixA, whose rows are the vectorsaT

i , i = 1, . . . ,m. Any of
the constraint boundscl

i , cu
i , xl

j andxu
j may be infinite.

The derived type is also capable of supportingparametric quadratic programming problems, in which an addi-
tional objective termθδgT x+ θδ f is included, and the trajectory of solution are required forall 0 ≤ θ ≤ θmax for
which

cl
i +θδcl

i ≤ aT
i x ≤ cu

i +θδcu
i , i = 1, . . . ,m,

and
xl

j +θxl
j ≤ x j ≤ xu

j + δxu
j , j = 1, . . . ,n.

New variablesX−1
s (x− xs) are calculated, involving the matrix of diagonal variable scaling factorsXs and a

corrsponding vector of shiftsxs. Likelwise the constraint values are transformed to beC−1
s (Ax − cs), involving the

matrix of diagonal constraint scaling factorsCs and vector of corrsponding shiftscs. The value of the objective
function is transformed to beF−1

s (q(x)− fs) using an objective scaling factorFs and shift fs.

ATTRIBUTES — Versions: GALAHAD SCALE single, GALAHAD SCALE double. Uses:GALAHAD SYMBOLS, GALAHAD-
SPACE, GALAHAD SPECFILE, GALAHAD TOOLS, GALAHAD SMT, GALAHAD QPT, GALAHAD TRANS. Date: January 2011.

Origin: N. I. M. Gould, Rutherford Appleton Laboratory.Language:Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requires aUSE statement such as

Single precision version

USE GALAHAD SCALE single

Double precision version

USE GALAHAD SCALE double

If it is required to use both modules at the same time, the derived typesSMT type, QPT problem type, SCALE trans type,
SCALE control type, SCALE inform type andSCALE data type (Section 2.2) and the subroutinesSCALE initialize,
SCALE get, SCALE apply, SCALE recover, SCALE terminate, (Section 2.3) andSCALE read specfile (Section 2.5)
must be renamed on one of theUSE statements.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (May 8, 2013) 1

SCALE GALAHAD

2.1 Matrix storage formats

Both the Hessian matrixH and the constraint JacobianA may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrixA is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensionalarray. Componentn∗ (i−1)+ j of the storage arrayA%val
will hold the valueai j for i = 1, . . . ,m, j = 1, . . . ,n. SinceH is symmetric, only the lower triangular part (that is the
part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component
i∗ (i−1)/2+ j of the storage arrayH%val will hold the valuehi j (and, by symmetry,h ji) for 1≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For thel-th entry ofA, its row indexi, column indexj and
valueai j are stored in thel-th components of the integer arraysA%row, A%col and real arrayA%val, respectively. The
order is unimportant, but the total number of entriesA%ne is also required. The same scheme is applicable toH (thus
requiring integer arraysH%row, H%col, a real arrayH%val and an integer valueH%ne), except that only the entries in
the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time theyare ordered so that those in rowi appear directly before
those in rowi+1. For thei-th row of A, the i-th component of a integer arrayA%ptr holds the position of the first
entry in this row, whileA%ptr (m+1) holds the total number of entries plus one. The column indices j and valuesai j

of the entries in thei-th row are stored in componentsl = A%ptr(i), . . . ,A%ptr (i+1)−1 of the integer arrayA%col,
and real arrayA%val, respectively. The same scheme is applicable toH (thus requiring integer arraysH%ptr, H%col,
and a real arrayH%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e.,hi j = 0 for all 1≤ i 6= j ≤ n) only the diagonals entrieshii, 1≤ i ≤ n, need be stored, and the first
n components of the arrayH%val may be used for the purpose. There is no sensible equivalent for the non-squareA.

2.2 The derived data types

Six derived data types are accessible from the package.

2.2.1 The derived data type for holding matrices

The derived data typeSMT TYPE is used to hold the matricesA andH. The components ofSMT TYPE used here are:

m is a scalar component of type defaultINTEGER, that holds the number of rows in the matrix.

n is a scalar component of type defaultINTEGER, that holds the number of columns in the matrix.

ne is a scalar variable of type defaultINTEGER, that holds the number of matrix entries.

type is a rank-one allocatable array of type defaultCHARACTER, that is used to indicate the matrix storage scheme
used. Its precise length and content depends on the type of matrix to be stored (see §2.2.2).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

2 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD SCALE double) and dimen-
sion at leastne, that holds the values of the entries. Each pair of off-diagonal entrieshi j = h ji of a symmetric
matrix H is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse
co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type defaultINTEGER, and dimension at leastne, that may hold the row indices
of the entries. (see §2.1.2).

col is a rank-one allocatable array of type defaultINTEGER, and dimension at leastne, that may the column indices
of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type defaultINTEGER, and dimension at leastm + 1, that may hold the pointers
to the first entry in each row (see §2.1.3).

2.2.2 The derived data type for holding the problem

The derived data typeQPT problem type is used to hold the problem. The components ofQPT problem type are:

n is a scalar variable of type defaultINTEGER, that holds the number of optimization variables,n.

m is a scalar variable of type defaultINTEGER, that holds the number of general linear constraints,m.

H is scalar variable of typeSMT TYPE that holds the Hessian matrixH. The following components are used:

H%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofH%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten com-
ponents ofH%type must contain the stringCOORDINATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofH%type must contain the stringSPARSE BY ROWS, and for
the diagonal storage scheme (see Section 2.1.4), the first eight components ofH%type must contain the
stringDIAGONAL.

For convenience, the procedureSMT put may be used to allocate sufficient space and insert the required
keyword intoH%type. For example, ifprob is of derived typeSCALE problem type and involves a Hes-
sian we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’)

See the documentation for theGALAHAD packageSMT for further details on the use ofSMT put.

H%ne is a scalar variable of type defaultINTEGER, that holds the number of entries in thelower triangular part
of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other
three schemes.

H%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD SCALE double), that
holds the values of the entries of thelower triangular part of the Hessian matrixH in any of the storage
schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices of thelower triangu-
lar part ofH in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any
of the other three schemes.

H%col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices of the
lower triangular part ofH in either the sparse co-ordinate (see Section 2.1.2), or thesparse row-wise (see
Section 2.1.3) storage scheme. It need not be allocated whenthe dense or diagonal storage schemes are
used.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (May 8, 2013) 3

SCALE GALAHAD

H%ptr is a rank-one allocatable array of dimensionn+1 and type defaultINTEGER, that holds the starting posi-
tion of each row of thelower triangular part ofH, as well as the total number of entries plus one, in the
sparse row-wise storage scheme (see Section 2.1.3). It neednot be allocated when the other schemes are
used.

G is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the gradientg of the linear term of the quadratic objective function. Thej-th component of
G, j = 1, . . . ,n, containsgj.

DG is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that may hold the gradientδg of the parametric linear term of the quadratic objective function. The
j-th component ofDG, j = 1, . . . ,n, containsδg j.

f is a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that holds the constant
term, f , in the objective function.

df is a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that holds the parametric
constant term,δ f , in the objective function.

A is scalar variable of typeSMT TYPE that holds the Jacobian matrixA. The following components are used:

A%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofA%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten compo-
nents ofA%type must contain the stringCOORDINATE, while for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofA%type must contain the stringSPARSE BY ROWS.

Just as forH%type above, the procedureSMT put may be used to allocate sufficient space and insert the
required keyword intoA%type. Once again, ifprob is of derived typeSCALE problem type and involves
a Jacobian we wish to store using the sparse row-wise storagescheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’)

A%ne is a scalar variable of type defaultINTEGER, that holds the number of entries inA in the sparse co-ordinate
storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

A%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD SCALE double), that
holds the values of the entries of the Jacobian matrixA in any of the storage schemes discussed in Sec-
tion 2.1.

A%row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices ofA in the sparse co-
ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices ofA in
either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.
It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimensionm+1 and type defaultINTEGER, that holds the starting po-
sition of each row ofA, as well as the total number of entries plus one, in the sparserow-wise storage
scheme (see Section 2.1.3). It need not be allocated when theother schemes are used.

C l is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD SCALE-
double), that holds the vector of lower boundscl on the general constraints. Thei-th component ofC l,

i= 1, . . . ,m, containscl
i . Infinite bounds are allowed by setting the corresponding components ofC l to any value

smaller than-infinity, whereinfinity is a component of the control arraycontrol (see Section 2.2.4).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

4 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

C u is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD SCALE-
double), that holds the vector of upper boundscu on the general constraints. Thei-th component ofC u,

i = 1, . . . ,m, containscu
i . Infinite bounds are allowed by setting the corresponding components ofC u to any

value larger thaninfinity, whereinfinity is a component of the control arraycontrol (see Section 2.2.4).

DC l is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD SCALE -
double), that may hold the vector of parametric lower boundsδcl on the general constraints. Thei-th component
of DC l, i = 1, . . . ,m, containsδcl

i . Only components corresponding to finite lower boundscl
i need be set.

DC u is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD SCALE -
double), that may hold the vector of parametric upper boundsδcu on the general constraints. Thei-th com-
ponent ofDC u, i = 1, . . . ,m, containsδcu

i . Only components corresponding to finite upper boundscu
i need be

set.

X l is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the vector of lower boundsxl on the the variables. Thej-th component ofX l, j = 1, . . . ,n,
containsxl

j. Infinite bounds are allowed by setting the corresponding components ofX l to any value smaller
than-infinity, whereinfinity is a component of the control arraycontrol (see Section 2.2.4).

X u is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the vector of upper boundsxu on the variables. Thej-th component ofX u, j = 1, . . . ,n,
containsxu

j . Infinite bounds are allowed by setting the corresponding components ofX u to any value larger
than thatinfinity, whereinfinity is a component of the control arraycontrol (see Section 2.2.4).

DX l is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that may hold the vector of parametric lower boundsδxl on the variables. Thej-th component of
DX l, j = 1, . . . ,n, containsδxl

j. Only components corresponding to finite lower boundsxl
j need be set.

DX u is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that may hold the vector of parametric upper boundsδxu on the variables. Thej-th component of
DX u, j = 1, . . . ,n, containsδxu

j . Only components corresponding to finite upper boundsxu
j need be set.

X is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the valuesx of the optimization variables. Thej-th component ofX, j = 1, . . . ,n, contains
x j.

C is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the valuesAx of the constraints. Thei-th component ofC, i= 1, . . . ,m, containsaT

i x≡ (Ax)i.

Y is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the valuesy of estimates of the Lagrange multipliers corresponding to the general linear
constraints (see Section 4). Thei-th component ofY, i = 1, . . . ,m, containsyi.

Z is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the valuesz of estimates of the dual variables corresponding to the simple bound constraints
(see Section 4). Thej-th component ofZ, j = 1, . . . ,n, containsz j.

2.2.3 The derived data type for holding the scaling factors and shifts

The derived data typeSCALE trans type is used to hold the computed scaling factors and shifts. The components of
SCALE trans type are:

X scale is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the variable scale factors. Thej-th component ofX scale, j = 1, . . . ,n, contains the scale
factor to be applied tox j.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (May 8, 2013) 5

SCALE GALAHAD

X shift is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the variable shifts if appropriate. Thej-th component ofX shift, j = 1, . . . ,n, contains the
shift to be applied tox j.

C scale is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD SCALE -
double), that holds the constraint scale factors. Thei-th component ofC scale, i = 1, . . . ,m, contains the scale
factor to be applied to thei-th constraint.

C shift is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD SCALE-
double), that holds the constraint shifts if appropriate. Thei-th component ofC shift, i = 1, . . . ,m, contains

the shift to be applied to thei-th constraint.

f scale is a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that holds the scale
factor for the objective function.

f shift is a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that holds the shift
for the objective function.

2.2.4 The derived data type for holding control parameters

The derived data typeSCALE control type is used to hold controlling data. Default values may be obtained by calling
SCALE initialize (see Section 2.3.1), while components may also be changed bycalling SCALE read specfile
(see Section 2.5.1). The components ofSCALE control type are:

error is a scalar variable of type defaultINTEGER, that holds the stream number for error messages. Printing of error
messages inSCALE get, SCALE apply, SCALE recover andSCALE terminate is suppressed iferror≤ 0. The
default iserror = 6.

out is a scalar variable of type defaultINTEGER, that holds the stream number for informational messages. Printing
of informational messages inSCALE get, SCALE apply, SCALE recover andSCALE terminate is suppressed
if out < 0. The default isout = 6.

print level is a scalar variable of type defaultINTEGER, that is used to control the amount of informational output
which is required. No informational output will occur ifprint level ≤ 0. If print level = 1, a single line
of output will be produced for each iteration of the process.If print level ≥ 2, this output will be increased
to provide significant detail of each iteration. The defaultis print level = 0.

maxit is a scalar variable of type defaultINTEGER, that holds the maximum number of scaling iterations which will
be allowed inSCALE get. The default ismaxit = 100.

shift x is a scalar variable of type defaultINTEGER, that should be set be larger than 0 if shifts should be applied to
the variablesx. No shifts will be applied ifshift x ≤ 0. The default isshift x = 0.

scale x is a scalar variable of type defaultINTEGER, that should be set be larger than 0 if scaling should be applied
to the variablesx. No scaling will be applied ifscale x ≤ 0. The default isscale x = 0.

shift c is a scalar variable of type defaultINTEGER, that should be set be larger than 0 if shifts should be applied to
the general constraints. No shifts will be applied ifshift c ≤ 0. The default isshift c = 0.

scale c is a scalar variable of type defaultINTEGER, that should be set be larger than 0 if scaling should be applied
to the general constraints No scaling will be applied ifscale c ≤ 0. The default isscale c = 0.

shift f is a scalar variable of type defaultINTEGER, that should be set be larger than 0 if shifts should be applied to
the objective function. No shifts will be applied ifshift f ≤ 0. The default isshift f = 0.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

6 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

scale f is a scalar variable of type defaultINTEGER, that should be set be larger than 0 if scaling should be applied
to the onjective function. No scaling will be applied ifscale f ≤ 0. The default isscale f = 0.

infinity is a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that is used to
specify which constraint bounds are infinite. Any bound larger thaninfinity in modulus will be regarded as
infinite. The default isinfinity = 1019.

stop tol is a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that is specifes the
stopping tolerance using for the scaling iteration if required.

scale x min is a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that is used
to specify the minimum permitted variable scale factor. Thedefault isscale x min = 1, and any specified
non-positive value ofscale x min will be interpreted as the default.

scale c min is a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that is used
to specify the minimum permitted constraint scale factor. The default isscale c min = 1, and any specified
non-positive value ofscale c min will be interpreted as the default.

space critical is a scalar variable of type defaultLOGICAL, that must be set.TRUE. if space is critical when
allocating arrays and.FALSE. otherwise. The package may run faster ifspace critical is .FALSE. but at the
possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type defaultLOGICAL, that must be set.TRUE. if the user wishes to
terminate execution if a deallocation fails, and.FALSE. if an attempt to continue will be made. The default is
deallocate error fatal = .FALSE..

prefix is a scalar variable of type defaultCHARACTER and length 30, that may be used to provide a user-selected
character string to preface every line of printed output. Specifically, each line of output will be prefaced by the
stringprefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied
string. If the user does not want to preface lines by such a string, they may use the defaultprefix = "".

2.2.5 The derived data type for holding informational parameters

The derived data typeSCALE inform type is used to hold parameters that give information about the progress and
needs of the algorithm. The components ofSCALE inform type are:

status is a scalar variable of type defaultINTEGER, that gives the exit status of the algorithm. See Section 2.4for
details.

alloc status is a scalar variable of type defaultINTEGER, that gives the status of the last attempted array allocation
or deallocation. This will be 0 ifstatus = 0.

bad alloc is a scalar variable of type defaultCHARACTER and length 80, that gives the name of the last internal array
for which there were allocation or deallocation errors. This will be the null string ifstatus = 0.

deviationis a scalar variable of type defaultREAL (double precision inGALAHAD SCALE double), that holds the value of
the deviation from double-stocasticity when appropriate.

2.2.6 The derived data type for holding problem data

The derived data typeSCALE data type is used to hold all the data for a particular problem, or sequences of problems
with the same structure, between calls ofSCALE procedures. This data should be preserved, untouched, fromthe initial
call toSCALE initialize to the final call toSCALE terminate.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (May 8, 2013) 7

SCALE GALAHAD

2.3 Argument lists and calling sequences

There are five procedures for user calls (see Section 2.5 for further features):

1. The subroutineSCALE initialize is used to set default values, and initialize private data, before solving one
or more problems with the same sparsity and bound structure.

2. The subroutineSCALE get is called to compute the scaling factors.

3. The subroutineSCALE apply is called to apply the scaling factors to the data of a QP problem.

4. The subroutineSCALE recover is called to undo the effects of the scaling factors previously applied to a QP
problem.

5. The subroutineSCALE terminate is provided to allow the user to automatically deallocate array components
of the private data, allocated bySCALE get, at the end of the solution process.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL SCALE initialize(data, control, inform)

data is a scalarINTENT(INOUT) argument of typeSCALE data type (see Section 2.2.6). It is used to hold data about
the problem being scaled.

control is a scalarINTENT(OUT) argument of typeSCALE control type (see Section 2.2.4). On exit,control
contains default values for the components as described in Section 2.2.4. These values should only be changed
after callingSCALE initialize.

inform is a scalarINTENT(OUT) argument of typeSCALE inform type (see Section 2.2.5). A successful call to
SCALE initialize is indicated when the componentstatus has the value 0. For other return values ofstatus,
see Section 2.4.

2.3.2 The subroutine that computes the scaling factors

The scaling factors and shifts are calculated as follows:

CALL SCALE get(prob, scale, trans, data, control, inform)

prob is a scalarINTENT(IN) argument of typeQPT problem type (see Section 2.2.2). It is used to hold data about
the problem being scaled. The user must allocate all the array components for the non-parametric problem
(1.1)–(1.3), and set values for these components.

The componentsprob%X, prob%C, prob%Y andprob%Z should be set to “typical” estimates of the primal
variables,x, general constraint valuesAx, Lagrange multipliers for the general constraints,y and dual variables
for the bound constraints,z, respectively.Restrictions: prob%n > 0, prob%m ≥ 0, prob%A type ∈ {’DENSE’,
’COORDINATE’, ’SPARSE BY ROWS’ }, andprob%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’,
’DIAGONAL’ }.

scale is a scalarINTENT(IN) argument of type defaultINTEGER, that is used to control problem scaling. Possible
values and their consequences are:

≤ 0 or> 7. No scaling will be performed

1. Scaling and shifts will be calculated to try to map all variables and constraints to have values between 0 and
1.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

8 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

2. The symmetric Curtis-Reid method will be applied to computescalings to normalize the rows of the matrix

K =

(

H AT

A 0

)

.

3. The unsymmetric Curtis-Reid method will be applied to normalize the rows and columns ofA.

4. Scaling will be applied to equilibrate the norms of the rows of A.

5. Strategy 2 will be followed by strategy 4.

6. Strategy 3 will be followed by strategy 4.

7. Scaling will be applied to equilibrate the rows and columns of K using the Sinkhorn-Knopp strategy.

trans is a scalarINTENT(INOUT) argument of typeSCALE data type (see Section 2.2.3) whose components will be
filled as appropriate on output with the scaling factors and shifts for the requested scaling strategy.

data is a scalarINTENT(INOUT) argument of typeSCALE data type (see Section 2.2.6). It is used to hold data about
the problem being solved. It must not have been alteredby the usersince the last call toSCALE initialize.

control is a scalarINTENT(IN) argument of typeSCALE control type (see Section 2.2.4). Default values may be
assigned by callingSCALE initialize prior to the first call toSCALE get.

inform is a scalarINTENT(INOUT) argument of typeSCALE inform type (see Section 2.2.5). A successful call to
SCALE get is indicated when the componentstatus has the value 0. For other return values ofstatus, see
Section 2.4.

2.3.3 The subroutine that applies the scaling factors and shifts

The scaling factors and shifts are applied to the quadratic programming problem data as follows:

CALL SCALE apply(prob, trans, data, control, inform)

The argumentsprob, trans, data, control andinform are as described forSCALE get except thatprob is now
INTENT(INOUT) while trans is INTENT(IN). On exit, the scalings and shifts recorded intrans will be applied to the
quadratic programming data input inprob; the transformed problem data will be output inprob. The transformation
will only be applied to the parametric componentsδg, δ f , δcl , δcu, δxl andδxu of the problem whenprob%DG is
allocated.

A successful call toSCALE apply is indicated when the componentinform%status has the value 0. For other
return values ofinform%status, see Section 2.4.

2.3.4 The subroutine that “undoes” the scaling factors and shifts

The effects of the scaling factors and shifts on the quadratic programming problem data are “undone” as follows:

CALL SCALE recover(prob, trans, data, control, inform)

The argumentsprob, trans, data, control andinform are exactly as described forSCALE apply except that now
on exit, the inverses of the scalings and shifts recorded intrans will be applied to the quadratic programming data
input in prob; the unscaled problem data will be output inprob. The reverse transformation will only be applied to
the parametric componentsδg, δ f , δcl , δcu, δxl andδxu of the problem whenprob%DG is allocated.

A successful call toSCALE recover is indicated when the componentinform%status has the value 0. For other
return values ofinform%status, see Section 2.4.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (May 8, 2013) 9

SCALE GALAHAD

2.3.5 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL SCALE terminate(data, control, inform)

data is a scalarINTENT(INOUT) argument of typeSCALE data type exactly as forSCALE get, which must not have
been alteredby the usersince the last call toSCALE initialize. On exit, array components will have been
deallocated.

control is a scalarINTENT(IN) argument of typeSCALE control type exactly as forSCALE get.

inform is a scalarINTENT(OUT) argument of typeSCALE inform type exactly as forSCALE get. Only the compo-
nentstatus will be set on exit, and a successful call toSCALE terminate is indicated when this component
status has the value 0. For other return values ofstatus, see Section 2.4.

2.4 Warning and error messages

A negative value ofinform%status on exit fromSCALE get, SCALE apply, SCALE recover or SCALE terminate
indicates that an error has occurred. No further calls should be made until the error has been corrected. Possible values
are:

-1. An allocation error occurred. A message indicating the offending array is written on unitcontrol%error, and the
returned allocation status and a string containing the nameof the offending array are held ininform%alloc -
status andinform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unitcontrol%error and
the returned allocation status and a string containing the name of the offending array are held ininform%alloc -
status andinform%bad alloc respectively.

-3. One of the restrictionsprob%n > 0, prob%m ≥ 0, or the requirements thatprob%A type contains its relevant
string’DENSE’, ’COORDINATE’ or ’SPARSE BY ROWS’ andprob%H type contain its relevant string’DENSE’,
’COORDINATE’, ’SPARSE BY ROWS’ or ’DIAGONAL’ has been violated.

A positive value ofinform%status is a warning. Possible values are:

18. Too many scaling iterations have been performed. This may happen ifcontrol%maxit is too small.

2.5 Further features

In this section, we describe an alternative means of settingcontrol parameters, that is components of the variable
control of type SCALE control type (see Section 2.2.4), by reading an appropriate data specification file using
the subroutineSCALE read specfile. This facility is useful as it allows a user to changeSCALE control parameters
without editing and recompiling programs that callSCALE.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command
occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify
a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.
All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not
contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more
than 30 characters, and each line of the specfile is limited to80 characters, including the blanks separating keyword
and value.

The portion of the specification file used bySCALE read specfile must start with a ”BEGIN SCALE” command
and end with an ”END” command. The syntax of the specfile is thus defined as follows:

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

10 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

(.. lines ignored by QP_read_specfile ..)
BEGIN CQP

keyword value
.......
keyword value

END
(.. lines ignored by QP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN SCALE” and “END” delimiter
command lines may contain additional (trailing) strings solong as such strings are separated by one or more blanks,
so that lines such as

BEGIN QP SPECIFICATION

and

END QP SPECIFICATION

are acceptable. Furthermore, between the “BEGIN SCALE” and “END” delimiters, specification commands may occur
in any order. Blank lines and lines whose first non-blank character is! or * are ignored. The content of a line after a!
or * character is also ignored (as is the! or * character itself). This provides an easy manner to ”commentout” some
specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real
values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for
logical parameters are ”ON”, ” TRUE”, ” .TRUE.”, ” T”, ” YES”, ” Y”, or ”OFF”, ” NO”, ” N”, ” FALSE”, ” .FALSE.” and ”F”.
Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input whenSCALE read specfile is called, and the associated device
number passed to the routine in device (see below). Note thatthe corresponding file isREWINDed, which makes it
possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed
by SCALE read specfile.

2.5.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL SCALE_read_specfile(control, device)

control is a scalarINTENT(INOUT)argument of typeSCALE control type (see Section 2.2.4). Default values
should have already been set, perhaps by callingSCALE initialize. On exit, individual components of
control may have been changed according to the commands found in the specfile. Specfile commands and
the component (see Section 2.2.4) ofcontrol that each affects are given in Table 2.1.

device is a scalarINTENT(IN)argument of type defaultINTEGER, that must be set to the unit number on which the
specfile has been opened. Ifdevice is not open,control will not be altered and execution will continue, but
an error message will be printed on unitcontrol%error.

2.6 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unitcontrol-
%out. If control%print level > 0, a few lines of output indicating the progress of the computation of the scaling
factotrs and shifts may be given.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (May 8, 2013) 11

SCALE GALAHAD

command component ofcontrol value type
error-printout-device %error integer
printout-device %out integer
print-level %print level integer
maximum-number-of-iterations %maxit integer
shift-x %shift x integer
scale-x %scale x integer
shift-c %shift c integer
scale-c %scale c integer
shift-f %shift f integer
scale-f %scale f integer
infinity-value %infinity real
stop-tolerance %stop tol real
smallest-x-scaling %scale x min real
smallest-c-scaling %scale x min real
space-critical %space critical logical
deallocate-error-fatal %deallocate error fatal logical
output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components ofcontrol.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: SCALE get , SCALE apply andSCALE recover call theGALAHAD packagesGALAHAD SY-
MBOLS, GALAHAD SPACE, GALAHAD SPECFILE, GALAHAD TOOLS, GALAHAD SMT, GALAHAD QPT andGALAHAD TRANS.

Input/output: Output is under control of the argumentscontrol%error, control%out andcontrol%print level.

Restrictions: prob%n> 0,prob%m≥0,prob%A type andprob%H type ∈{’DENSE’, ’COORDINATE’, ’SPARSE BY -
ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solutionx necessarily satisfies the primal optimality conditions

Ax = c (4.1)

and
cl ≤ c≤ cu, xl ≤ x ≤ xu, (4.2)

the dual optimality conditions

Hx +g= AT y+ z, y = yl + yu and z= zl + zu, (4.3)

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

12 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

and
yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (4.4)

and the complementary slackness conditions

(Ax − cl)T yl = 0, (Ax − cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0, (4.5)

where the vectorsy and z are known as the Lagrange multipliers for the general linearconstraints, and the dual
variables for the bounds, respectively, and where the vector inequalities hold componentwise.

The Curtis-Reid symmetric and unsymmetric matrix scaling procedures are described in

A. R. Curtis and J. K. Reid (1972). On the automatic scaling ofmatrices for Gaussian elimination. IMA J. Appl.
Math. 10(1)118-124.

The Sinkhorn-Knopp scaling strategy that aims to scale a symmetric matrix so that it is doubly stochastic (i.e., its
rows and columns have unit norm) was proposed by

R. Sinkhorn and P. Knopp (1967). Concerning nonnegative matrices and doubly stochastic matrices. Pacific J. Math.
21(2)343-348.

The other strategies are “home grown”.

5 EXAMPLE OF USE

Suppose we are considering the quadratic program1
2x2

1 + x2
2+ x2x3 + 3

2x2
3+ 2x2+ 1 subject to the the general linear

constraints 1≤ 2x1+ x2 ≤ 2 andx2+ x3 = 2, and simple bounds−1≤ x1 ≤ 1 andx3 ≤ 2. Then, on writing the data
for this problem as

H =





1
2 1
1 3



 , g=





0
2
0



 , xl =





−1
−∞
−∞



 , xu =





1
∞
2





and

A =

(

2 1
1 1

)

, cl =

(

1
2

)

, and cu =

(

2
2

)

in sparse co-ordinate format, we may transform the problem using Sinkhorn-Knopp scaling using the following code:

! THIS VERSION: GALAHAD 2.4 - 17/01/2011 AT 15:30 GMT.
PROGRAM GALAHAD_SCALE_EXAMPLE
USE GALAHAD_SCALE_double ! double precision version
USE GALAHAD_SMT_double
IMPLICIT NONE
INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20
TYPE (QPT_problem_type) :: p
TYPE (SCALE_trans_type) :: trans
TYPE (SCALE_data_type) :: data
TYPE (SCALE_control_type) :: control
TYPE (SCALE_inform_type) :: inform
INTEGER :: s, scale
INTEGER, PARAMETER :: n = 3, m = 2, h_ne = 4, a_ne = 4

! start problem data
ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))
ALLOCATE(p%C(m), p%C_l(m), p%C_u(m))
ALLOCATE(p%X(n), p%Y(m), p%Z(n))
p%n = n ; p%m = m ; p%f = 1.0_wp ! dimensions & obj constant

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (May 8, 2013) 13

SCALE GALAHAD

p%G = (/ 0.0_wp, 2.0_wp, 0.0_wp /) ! objective gradient
p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound
p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound
p%X_l = (/ - 1.0_wp, - infinity, - infinity /) ! variable lower bound
p%X_u = (/ 1.0_wp, infinity, 2.0_wp /) ! variable upper bound
p%X = 0.0_wp ; p%Y = 0.0_wp ; p%Z = 0.0_wp ! typical values for x, y & z
p%C = 0.0_wp ! c = A * x

! sparse co-ordinate storage format
CALL SMT_put(p%H%type, ’COORDINATE’, s) ! specify co-ordinate
CALL SMT_put(p%A%type, ’COORDINATE’, s) ! storage for H and A
ALLOCATE(p%H%val(h_ne), p%H%row(h_ne), p%H%col(h_ne))
ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))
p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H
p%H%row = (/ 1, 2, 2, 3 /) ! NB lower triangle
p%H%col = (/ 1, 2, 1, 3 /) ; p%H%ne = h_ne
p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A
p%A%row = (/ 1, 1, 2, 2 /)
p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! problem data complete - compute and apply scale factors
CALL SCALE_initialize(data, control, inform) ! Initialize controls
control%infinity = infinity ! Set infinity
scale = 7 ! Sinkhorn-Knopp scaling
CALL SCALE_get(p, scale, trans, data, control, inform) ! Get scalings
IF (inform%status == 0) THEN ! Successful return
WRITE(6, "(’ variable scalings : ’, /, (5ES12.4))") trans%X_scale
WRITE(6, "(’ constraint scalings : ’, /, (5ES12.4))") trans%C_scale

ELSE ! Error returns
WRITE(6, "(’ SCALE_get exit status = ’, I6) ") inform%status

END IF
CALL SCALE_apply(p, trans, data, control, inform)
IF (inform%status == 0) THEN ! Successful return
WRITE(6, "(’ scaled A : ’, /, (5ES12.4))") p%A%val

ELSE ! Error returns
WRITE(6, "(’ SCALE_get exit status = ’, I6) ") inform%status

END IF
CALL SCALE_terminate(data, control, inform, trans) ! delete workspace
END PROGRAM GALAHAD_SCALE_EXAMPLE

This produces the following output:

variable scalings :
7.0711E-01 7.0711E-01 5.7735E-01
constraint scalings :
7.0711E-01 1.2968E+00
scaled A :
1.0000E+00 5.0000E-01 9.1700E-01 7.4873E-01

The same problem may be scaled holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format
...
! problem data complete

by

! sparse row-wise storage format
CALL SMT_put(p%H%type, ’SPARSE_BY_ROWS’) ! Specify sparse-by-row

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

14 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

ALLOCATE(p%H%val(h_ne), p%H%col(h_ne), p%H%ptr(n + 1))
ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))
p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H
p%H%col = (/ 1, 2, 3, 3 /) ! NB lower triangular
p%H%ptr = (/ 1, 2, 3, 5 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format
CALL SMT_put(p%H%type, ’DENSE’) ! Specify dense
ALLOCATE(p%H%val(n * (n + 1) / 2))
p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 0.0_wp, 1.0_wp, 3.0_wp /) ! Hessian

! problem data complete

respectively.

If insteadH had been the diagonal matrix

H =





1
2

3





but the other data is as before, the diagonal storage scheme might be used forH, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’) ! Specify dense storage for H
ALLOCATE(p%H%val(n))
p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp /) ! Hessian values

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (May 8, 2013) 15

