
GALAHAD CHECK
USER DOCUMENTATION GALAHAD Optimization Library version 2.5

1 SUMMARY

This package uses finite difference approximations tocheck the gradient of an objective functionf (x), the Jacobian
matrix of a constraint function c(x), and the second derivative Hessian matrix of the Lagrangianfunction
L(x,y) = f (x)− c(x)T y. These quantities are typically associated with a nonlinear optimization problem

minimize f (x)

subject to the general linear constraints

al
i ≤ aT

i x ≤ au
i , i = 1, . . . ,ma,

general nonlinear constraints
cl

i ≤ ci(x)≤ cu
i , i = 1, . . . ,m,

and simple bound constraints
xl

j ≤ x j ≤ xu
j , j = 1, . . . ,n,

where the vectorsai, al , au, cl , cu, xl , andxu are given, and the vectorsx ∈ IRn and y ∈ IRm are known as the
primal and dual (Lagrange multiplier) vectors, respectively. The user may choose to perform a “cheap” verification
of the requested derivatives, or a more detailed and “expensive” check. Function values can be supplied via internal
subroutine evaluation or reverse communication.

ATTRIBUTES — Versions: GALAHAD CHECK single andGALAHAD CHECK double. Uses:GALAHAD SYMBOLS, GAL-
AHAD SPECFILE, GALAHAD SPACE, GALAHAD MOP, GALAHAD SMT, andGALAHAD NLPT. Date: September 2010.Origin:
D. P. Robinson, University of Oxford, UK, and N. I. M. Gould, Rutherford Appleton Laboratory.Language: For-
tran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requires aUSE statement such as

Single precision version

USE GALAHAD CHECK single

Double precision version

USE GALAHAD CHECK double

If it is required to use both modules at the same time, the derived typesSMT type, NLPT problem type, CHECK -
control type, CHECK inform type, CHECK data type, CHECK reverse communication type andNLPT userdata -
type (Section 2.2), and the subroutinesCHECK initialize, CHECK verify, CHECK terminate (Section 2.3), and
CHECK read specfile (Section 2.7) must be renamed on one of theUSE statements.

2.1 Matrix storage formats

The Jacobian matrixJ = ∇xc(x) and the Hessian matrixH = ∇xxL(x,y) may be stored in a variety of input formats.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 1

CHECK GALAHAD

2.1.1 Dense storage format

The matrixJ is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensionalarray. Componentn∗ (i−1)+ j of the storage arrayJ%val
will hold the valueji j for i = 1, . . . ,m and j = 1, . . . ,n. SinceH is symmetric, only the lower triangular part (that is the
parthi j for 1≤ j ≤ i ≤ n) should be stored. In this case the lower triangle will be stored by rows, that is component
i∗ (i−1)/2+ j of the storage arrayH%val will hold the valuehi j (and, by symmetry,h ji) for 1≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For thel-th entry ofJ, its row indexi, column indexj and valueji j

are stored in thel-th components of the integer arraysJ%row, J%col and real arrayJ%val. The order is unimportant,
but the total number of entriesJ%ne is also required. SinceH is symmetric, the same scheme is applicable, except that
only the entries in the lower triangle should be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time theyare ordered so that those in rowi appear directly before
those in rowi+1. For thei-th row of J, the i-th component of a integer arrayJ%ptr holds the position of the first
entry in this row, whileJ%ptr (m+1) holds the total number of entries plus one. The column indices j and valuesji j

of the entries in thei-th row are stored in componentsl = J%ptr(i), . . . ,J%ptr (i+1)−1 of the integer arrayJ%col,
and real arrayJ%val, respectively. SinceH is symmetric, the same scheme is applicable, except that only the entries
in the lower triangle should be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Sparse column-wise storage format

Again only the nonzero entries are stored, but this time theyare ordered so that those in columnj appear directly
before those in columnj + 1. For the j-th column ofJ, the j-th component of the integer arrayJ%ptr holds the
position of the first entry in this column, whileJ%ptr (n+ 1) holds the total number of entries plus one. The row
indicesi and valuesji j of the entries in thej-th column are stored in componentsl = J%ptr(j), . . . ,J%ptr (j+1)−1
of the integer arrayJ%row, and real arrayJ%val, respectively. SinceH is symmetric, the same scheme is applicable,
except that only the entries in the lower triangle should be stored.

2.1.5 Diagonal storage format

If J is diagonal (i.e.,ji j = 0 for all 1≤ i 6= j ≤ n) only the diagonal entriesjii for 1≤ i ≤ n should be stored, and the
first n components of the arrayJ%val should be used for this purpose. The same holds forH.

2.2 The derived data types

Seven derived data types are accessible from the package.

2.2.1 The derived data type for holding matrices

The derived data typeSMT TYPE is used to hold the Jacobian matrixJ and the Hessian matrixH. The components of
SMT TYPE used here are:

m is a scalar component of type defaultINTEGER that holds the number of rows of the matrix.

n is a scalar component of type defaultINTEGER that holds the number of columns of the matrix.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

2 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

ne is a scalar variable of type defaultINTEGER that holds the number of matrix entries.

type is a rank-one allocatable array of type defaultCHARACTER that is used to indicate the matrix storage scheme
used. Its precise length and content depends on the type of matrix to be stored (see §2.2.2).

val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) and dimen-
sion at leastne, that holds the values of the entries. Each pair of off-diagonal entrieshi j = h ji for thesymmetric
matrix H is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse
co-ordinate, row-wise, or column-wise schemes will be summed.

row is a rank-one allocatable array of type defaultINTEGER, and dimension at leastne, that may hold the row indices
of the entries (see §2.1.2).

col is a rank-one allocatable array of type defaultINTEGER, and dimension at leastne, that may hold the column
indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type defaultINTEGER. If sparse row-wise storage is used (see §2.1.3), then it
must have dimension at leastm + 1 and hold the pointers to the first entry in each row. If sparse column-wise
storage is used (see §2.1.4), then it must have dimension at leastn + 1 and hold the pointers to the first entry in
each column.

2.2.2 The derived data type for holding the problem

The derived data typeNLPT problem type holds the problem. The relevant components ofNLPT problem type are:

m is a scalar variable of type defaultINTEGER that holds the number of nonlinear constraintsm.

n is a scalar variable of type defaultINTEGER that holds the number of optimization variablesn.

H is scalar variable of typeSMT TYPE that holds the Hessian matrixH = ∇xx f (x). The following components are
used here:

H%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofH%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten com-
ponents ofH%type must contain the stringCOORDINATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofH%type must contain the stringSPARSE BY ROWS, for the
sparse column-wise storage scheme (see Section 2.1.4), thefirst seventeen components ofH%type must
contain the stringSPARSE BY COLUMNS, and for the diagonal storage scheme (see Section 2.1.5), the first
eight components ofH%type must contain the stringDIAGONAL.

For convenience, the procedureSMT put may be used to allocate sufficient space and insert the required
keyword intoH%type. For example, ifnlp is of derived typeCHECK problem type and involves a Hessian
we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%H%type, ’COORDINATE’)

See the documentation for theGALAHAD packageSMT for further details on the use ofSMT put.

H%ne is a scalar variable of type defaultINTEGER, that holds the number of entries in thelower triangular part
of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other
four schemes.

H%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double), that
holds the values of the entries of thelower triangular part of the Hessian matrixH in any of the storage
schemes discussed in Section 2.1.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 3

CHECK GALAHAD

H%row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices of thelower trian-
gular part ofH in the sparse co-ordinate storage scheme (see Section 2.1.2) and the sparse column-wise
scheme (see Section 2.1.4). It need not be allocated for any of the other three schemes.

H%col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices of the
lower triangular part ofH in either the sparse co-ordinate (see Section 2.1.2), or thesparse row-wise (see
Section 2.1.3) storage scheme. It need not be allocated for any of the other three schemes.

H%ptr is a rank-one allocatable array of dimensionn+1 and type defaultINTEGER that holds the starting position
of each row of thelower triangular part of H, as well as the total number of entries plus one, in the
sparse row-wise storage scheme (see Section 2.1.3), or the starting position of each column of thelower
triangular part ofH, as well as the total number of entries plus one, in the sparsecolumn-wise storage
scheme (see Section 2.1.4). It need not be allocated when theother schemes are used.

J is scalar variable of typeSMT TYPE that holds the Jacobian matrixJ = ∇xc(x). The following components are
used here:

J%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofJ%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten com-
ponents ofJ%type must contain the stringCOORDINATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofJ%type must contain the stringSPARSE BY ROWS, for the
sparse column-wise storage scheme (see Section 2.1.4), thefirst seventeen components ofJ%type must
contain the stringSPARSE BY COLUMNS, and for the diagonal storage scheme (see Section 2.1.5), the first
eight components ofJ%type must contain the stringDIAGONAL.

For convenience, the procedureSMT put may be used to allocate sufficient space and insert the required
keyword intoJ%type. For example, ifnlp is of derived typeCHECK problem type and involves a Jacobian
we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%J%type, ’COORDINATE’)

See the documentation for theGALAHAD packageSMT for further details on the use ofSMT put.

J%ne is a scalar variable of type defaultINTEGER that holds the number of entries in the sparse co-ordinate
storage scheme (see Section 2.1.2). It need not be set for anyof the other schemes.

J%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) that
holds the values of the entries of the Jacobian matrixJ in any of the storage schemes discussed in Sec-
tion 2.1.

J%row is a rank-one allocatable array of type defaultINTEGER that holds the row indices ofJ in the sparse co-
ordinate storage scheme discussed in Section 2.1.2 and the sparse column-wise storage scheme discussed
in Section 2.1.4. It need not be allocated for any of the otherthree schemes.

J%col is a rank-one allocatable array variable of type defaultINTEGER that holds the column indices ofJ in
either the sparse co-ordinate scheme discussed in Section 2.1.2 or the sparse row-wise scheme discussed
in Section 2.1.3. It need not be allocated for any of the otherthree schemes.

J%ptr for the sparse row-wise storage scheme discussed in Section2.1.3, it is a rank-one allocatable array of
dimensionm+1 and type defaultINTEGER that holds the starting position of each row ofJ as well as the
total number of entries plus one. For the sparse column-wisestorage scheme discussed in Section 2.1.4, it
is a rank-one allocatable array of dimensionn+1 and type defaultINTEGER that holds the starting position
of each column ofJ as well as the total number of entries plus one. It need not be allocated for any of the
other schemes.

G is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD CHECK -
double), that holds the gradientg of the objective function. Thej-th component ofG, j = 1, . . . ,n, contains
gj.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

4 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

C is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD CHECK -
double) that holds the value of the constraint function. Thej-th component ofC, j = 1, . . . ,m, containscj.

f is a scalar variable of type defaultREAL (double precision inGALAHAD CHECK double) that holds the value of
the objective function.

X is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD CHECK -
double), that holds the valuesx of the optimization variables. Thej-th component ofX, j = 1, . . . ,n, contains
x j.

X l is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD CHECK -
double) that holds the lower bounds on the optimization variablesx.

X u is a rank-one allocatable array of dimensionn and type defaultREAL (double precision inGALAHAD CHECK -
double) that holds upper bounds on the optimization variablesx.

Y is a rank-one allocatable array of dimensionm and type defaultREAL (double precision inGALAHAD CHECK -
double) that holds the valuey of the Lagrange multiplier estimate. Thej-th component ofY, j = 1, . . . ,m,
containsy j.

2.2.3 The derived data type for holding control parameters

The derived data typeCHECK control type is used to hold controlling data. Default values may be obtained by calling
CHECK initialize (see Section 2.3.1), while components may also be changed bycalling GALAHAD CHECK read-
spec (see Section 2.7.1). The components ofCHECK control type are:

error is a scalar variable of type defaultINTEGER, that holds the stream number for error messages. Printing of error
messages inCHECK verify andCHECK terminate is suppressed iferror ≤ 0. The default iserror = 6.

out is a scalar variable of type defaultINTEGER, that holds the stream number for informational messages. Printing
of informational messages inCHECK verify is suppressed ifout ≤ 0. The default isout = 6.

print level is a scalar variable of type defaultINTEGER, that is used to control the amount of informational output
which is required. No informational output will occur ifprint level ≤ 0. If print level = 1, a brief
summary of the derivative verification is provided. Ifprint level ≥ 2, this output will be increased to provide
significant detail of each iteration (see Section 2.8 for more details). The default isprint level = 0.

verify level is a scalar variable of type defaultINTEGER that determines the detail of verification performed. A
“cheap” check will be performed ifverify level = 1. If verify level ≥ 2, an “expensive”—but more
detailed—verification of the derivatives is done. No checking is performed ifverify level ≤ 0. The default
is verify level = 2.

f availability is a scalar variable of type defaultINTEGER that controls how the user is expected to supply objective
function values, when required. The user should setf availability = 1 if an appropriate evaluation routine is
supplied (see Section 2.4.1), andf availability = 2 if reverse communication will be used (see Section 2.5).

c availability is a scalar variable of type defaultINTEGER that controls how the user is expected to supply con-
straint function values, when required. The user should setc availability = 1 if an appropriate evaluation
routine is supplied (see Section 2.4.2), andc availability = 2 if reverse communication will be used (see
Section 2.5). Any other value will result in an error message.

g availability is a scalar variable of type defaultINTEGER that controls how the user is expected to supply the
gradient of the objective function, when required. The usershould setg availability = 1 if an appropriate
evaluation routine is supplied (see Section 2.4.3), andg availability = 2 if reverse communication will be
used (see Section 2.5). Any other value will result in an error message.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 5

CHECK GALAHAD

J availability is a scalar variable of type defaultINTEGER that controls how the user is expected to supply the
Jacobian of the constraint function, when required. The user should setJ availability = 1 if an appropriate
evaluation routine is supplied (see Section 2.4.4),J availability = 2 if reverse communication will be used
to obtain Jacobian values (see Section 2.5),J availability = 3 if an appropriate Jacobian-vector product
routine is supplied (see Section 2.4.6), andJ availability = 4 if reverse communication will be used to get
Jacobian-vector products (see Section 2.5). Any other value will result in an error message.

H availability is a scalar variable of type defaultINTEGER that controls how the user is expected to supply the
Hessian of the Lagrangian function, when required. The usershould setH availability = 1 if an appropriate
evaluation routine is supplied (see Section 2.4.5),H availability = 2 if reverse communication will be used to
obtain Hessian values (see Section 2.5),H availability = 3 if an appropriate Hessian-vector product routine
is supplied (see Section 2.4.7), andH availability = 4 if reverse communication will be used to get Hessian-
vector products (see Section 2.5). Any other value will result in an error message.

checkG is a scalar variable of type defaultLOGICAL that should be set.TRUE. if the gradient of the objective function
should be checked. Otherwise, it should be set.FALSE.. The default ischeckG=.TRUE..

checkJ is a scalar variable of type defaultLOGICAL that should be set.TRUE. if the Jacobian of the constraint function
should be checked. Otherwise, it should be set.FALSE.. The default ischeckJ =.TRUE..

checkH is a scalar variable of type defaultLOGICAL that should be set.TRUE. if the Hessian of the Lagrangian
function should be checked. Otherwise, it should be set.FALSE.. The default ischeckH=.TRUE..

deallocate error fatal is a scalar variable of type defaultLOGICAL, that must be set.TRUE. if the user wishes to
terminate execution if a deallocation fails, and.FALSE. if an attempt to continue will be made. The default is
deallocate error fatal = .FALSE..

2.2.4 The derived data type for holding informational parameters

The derived data typeCHECK inform type is used to hold parameters that give information about the progress and
needs of the algorithm. The components ofCHECK inform type are:

status is a scalar variable of type defaultINTEGER that gives the exit status of the algorithm. See Sections 2.5and 2.6
for further details.

alloc status is a scalar variable of type defaultINTEGER that gives the status of the last attempted array allocation
or deallocation. This will be 0 ifstatus = 0.

bad alloc is a scalar variable of type defaultCHARACTER and length 80 that gives the name of the last internal array
for which there was an allocation or deallocation error. This will be the null string ifstatus = 0.

numG wrong is a scalar variable of type defaultINTEGER that gives the number of components of the gradient of the
objective function that appear to be wrong.

numJ wrong is a scalar variable of type defaultINTEGER that gives the number of entries of the Jacobian of the
constraint function that appear to be wrong.

numH wrong is a scalar variable of type defaultINTEGER that gives the number of entries of the Hessian of the La-
grangian function that appear to be wrong.

derivative ok is a scalar variable of type defaultLOGICAL that is.TRUE. if all derivatives appear to be correct, and
set.FALSE. otherwise.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

6 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

2.2.5 The derived data type for holding problem data

The derived data typeCHECK data type is used to hold all the data for a particular problem, or sequences of prob-
lems with the same structure, between calls ofCHECK procedures. The only data that should be changed by the
user from the initial call toCHECK initialize to the final call toCHECK terminate is the componentRC of type
CHECK reverse communication type (see Section 2.2.6), and this should be done only as directedfrom GALAH-
AD CHECK verify with positive values ofinform%status as described in Section 2.5.

2.2.6 The derived data type for holding reverse communication data

The derived data typeCHECK reverse communication type is used to hold data for reverse communication, when
needed. The components ofCHECK reverse communication type are:

X is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) that holds the
values of the optimization variables at which the user must perform function computation.

Y is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) that holds the
values of the Lagrange multipliers that the user must use when evaluating the Hessian of the Lagrangian.

F is a scalar variable of type defaultREAL (double precision inGALAHAD CHECK double) in which the user places the
value of the objective function evaluated atX, when required (see Section 2.5).

C is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) in which the user
places the value of the constraint function evaluated atX, when required (see Section 2.5).

G is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) in which the user
places the gradient of the the objective function evaluatedatX, when required (see Section 2.5).

V is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) that holds the
vector for which a matrix-vector product is required (see Section 2.5).

U is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) in which the user
places the result of any required matrix-vector product with the vectorV from above (see Section 2.5).

Jval is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) in which the
user places the entries of the Jacobian matrix evaluated atX, when required (see Section 2.5).

Hval is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double) in which the
user places thelower triangular entries of the Hessian matrix of the Lagrangian evaluated atX andY, when
required (see Section 2.5).

2.2.7 The derived data type for holding user data

The derived data typeNLPT userdata type is available to allow the user to pass data to and from user-supplied sub-
routines for function and derivative calculations (see Section 2.4). Components of variables of typeNLPT userdata type
may be allocated as necessary. The following components areavailable:

integer is a rank-one allocatable array of type defaultINTEGER.

real is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD CHECK double)

complex is a rank-one allocatable array of type defaultCOMPLEX (double precision complex inGALAHAD CHECK -
double).

character is a rank-one allocatable array of type defaultCHARACTER.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 7

CHECK GALAHAD

logical is a rank-one allocatable array of type defaultLOGICAL.

integer pointer is a rank-one pointer array of type defaultINTEGER.

real pointer is a rank-one pointer array of type defaultREAL (double precision inGALAHAD CHECK double)

complex pointer is a rank-one pointer array of type defaultCOMPLEX (double precision complex inGALAHAD CHECK -
double).

character pointer is a rank-one pointer array of type defaultCHARACTER.

logical pointer is a rank-one pointer array of type defaultLOGICAL.

2.3 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutineCHECK initialize is used to set default values, and initialize private data, before verifying the
derivatives of one or more problems with the same sparsity and bound structure.

2. The subroutineCHECK verify is called to check the derivatives of the given problem.

3. The subroutineCHECK terminate is provided to allow the user to automatically deallocate array components
of the private data, allocated byCHECK verify, at the end of the verification process. It is important to do this if
the data object is re-used for another problemwith a different structure sinceCHECK initialize cannot test
for this situation, and any existing associated targets will subsequently become unreachable.

We use square brackets[] to indicateOPTIONAL arguments.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL CHECK initialize(control)

control is a scalarINTENT(OUT) argument of typeCHECK control type (see Section 2.2.3). On exit,control
contains default values for the components as described in Section 2.2.3. These values should only be changed
after callingCHECK initialize.

2.3.2 The verification subroutine

The verification algorithm is called as follows:

CALL CHECK verify(nlp, data, control, inform, userdata[, eval F, eval C, &
eval G, eval J, eval H, eval Jv, eval Hv])

nlp is a scalarINTENT(INOUT) argument of typeNLPT problem type (see Section 2.2.2). It is used to hold data
about the problem whose derivatives are being verified. For anew problem, the user must allocate all the array
components, and set values fornlp%m, nlp%n, and the required integer components ofnlp%J andnlp%H that
is determined by the values ofcheckJ andcheckH as described in Section 2.2.3. Users are free to choose
whichever of the matrix formats described in Section 2.1 is appropriate forJ andH for their application.

The componentsnlp%X andnlp%Y must be set to initial valuesx andy of the primal and dual variables for the
optimization problem. Prior to verification of the derivatives, the pointnlp%X is modified internally to ensure
feasibility with respect to the bound constraintsxl andxu; no modification ofy is performed. The requested
derivatives are then checked at the pointnlp%X andnlp%Y.

Restrictions: nlp%n > 0 andnlp%m ≥ 0.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

8 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

data is a scalarINTENT(INOUT) argument of typeCHECK data type (see Section 2.2.5). It is used to hold data about
the problem derivatives being verified. With the possible exception of the componentRC (see Sections 2.2.6 and
2.5), it must not have been alteredby the usersince the last call toCHECK initialize.

control is a scalarINTENT(IN) argument of typeCHECK control type (see Section 2.2.3). Default values may be
assigned by callingCHECK initialize prior to the first call toCHECK solve.

inform is a scalarINTENT(INOUT) argument of typeCHECK inform type (see Section 2.2.4).On initial entry,
the componentstatus must be set to the value 1. Other entries need not be set. A successful call to
CHECK verify is indicated when the componentstatus has the value 0. For other return values ofstatus, see
Sections 2.5 and 2.6.

userdata is a scalarINTENT(INOUT) argument of typeNLPT userdata type whose components may be used
to communicate user-supplied data to and from theOPTIONAL subroutineseval F, eval C, eval G, eval J,
eval H, eval Jv, andeval Hv (see Section 2.2.7).

eval F is anOPTIONAL user-supplied subroutine whose purpose is to evaluate the objective functionf (x) at a given
vectorx. See Section 2.4.1 for details. Iff availability = 1 (see Section 2.2.3), theneval F must be present
and declaredEXTERNAL in the calling program. Iff availability = 2, thenGALAHAD CHECK verify will use
reverse communication to obtain objective function values(see Section 2.5).

eval C is anOPTIONAL user-supplied subroutine whose purpose is to evaluate the constraint functionc(x) at a given
vectorx. See Section 2.4.2 for details. Ifc availability = 1 (see Section 2.2.3), theneval C must be present
and declaredEXTERNAL in the calling program. Ifc availability = 2, thenGALAHAD CHECK verify will use
reverse communication to obtain constraint function values (see Section 2.5).

eval G is anOPTIONAL user-supplied subroutine whose purpose is to evaluate the gradient of the objective function
∇x f (x) at a given vectorx. See Section 2.4.3 for details. Ifg availability = 1 (see Section 2.2.3), then
eval G must be present and declaredEXTERNAL in the calling program. Ifg availability = 2, thenGALAH-
AD CHECK verify will use reverse communication to obtain gradient values (see Section 2.5).

eval J is anOPTIONAL user-supplied subroutine whose purpose is to evaluate the Jacobian of the objective function
∇xx f (x) at a given vectorx. See Section 2.4.5 for details. IfJ availability = 1 (see Section 2.2.3), then
eval J must be present and declaredEXTERNAL in the calling program. Otherwise,eval J need not be supplied.

eval H is anOPTIONAL user-supplied subroutine whose purpose is to evaluate the Hessian of the Lagrangian∇xxL(x,y)
at a given point(x,y). See Section 2.4.5 for details. IfH availability = 1 (see Section 2.2.3), theneval H
must be present and declaredEXTERNAL in the calling program. Otherwise,eval H need not be supplied.

eval Jv is anOPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product of the Jacobian
of the constraint function∇xc(x) with a given vectorv. See Section 2.4.7 for details. IfJ availability = 3
(see Section 2.2.3), theneval Jv must be present and declaredEXTERNAL in the calling program. Otherwise,
eval Jv need not be supplied.

eval Hv is anOPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product of the Hessian
of the Lagrangian function∇xxL(x,y) with a given vectorv. See Section 2.4.7 for details. IfH availability
= 3 (see Section 2.2.3), theneval Hv must be present and declaredEXTERNAL in the calling program. Otherwise,
eval Hv need not be supplied.

2.3.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL CHECK terminate(data, control, inform)

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 9

CHECK GALAHAD

data is a scalarINTENT(INOUT) argument of typeCHECK data type exactly as forCHECK verify, which must not
have been alteredby the usersince the last call toCHECK initialize (except possiblydata%RC as described
in Section 2.5). On exit, array components will have been deallocated.

control is a scalarINTENT(IN) argument of typeCHECK control type exactly as forCHECK verify.

inform is a scalarINTENT(OUT) argument of typeCHECK inform type exactly as forCHECK verify. Only the com-
ponentstatus will be set on exit, and a successful call toCHECK terminate is indicated when this component
status has the value 0. For other return values ofstatus see Section 2.6.

2.4 Function and derivative values

2.4.1 The objective function value via internal evaluation

If the control parameterf availability = 1 (see Section 2.2.3), then the argumenteval F must be present when
calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the value of the
objective functionf (x). The routine must be specified as

SUBROUTINE eval_F(status, X, userdata, F)

whose arguments are as follows:

status is a scalarINTENT(OUT) argument of type defaultINTEGER, that should be set to 0 if the routine has been
able to evaluate the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorx.

userdata is a scalarINTENT(INOUT) argument of typeNLPT userdata type whose components may be used to
communicate user-supplied data to and from the subroutineseval F, eval C, eval G, eval J eval H, eval Jv,
andeval Hv (see Section 2.2.7).

F is a scalarINTENT(OUT) argument of type defaultREAL (double precision inGALAHAD CHECK double) that
should be set to the value of the objective functionf (x) evaluated at the vectorx input inX.

2.4.2 The constraint function value via internal evaluation

If the control parameterc availability = 1 (see Section 2.2.3), then the argumenteval C must be present when
calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the value of the
constraint functionc(x). The routine must be specified as

SUBROUTINE eval_C(status, X, userdata, C)

whose arguments are as follows:

status is a scalarINTENT(OUT) argument of type defaultINTEGER, that should be set to 0 if the routine has been
able to evaluate the constraint function and to a non-zero value if the evaluation has not been possible.

X is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorx.

userdata is a scalarINTENT(INOUT) argument of typeNLPT userdata type whose components may be used to
communicate user-supplied data to and from the subroutineseval F, eval C, eval G, eval J eval H, eval Jv,
andeval Hv (see Section 2.2.7).

C is a rank-oneINTENT(OUT) argument of type defaultREAL (double precision inGALAHAD CHECK double) that
should be set to the value of the constraint functionc(x) evaluated at the vectorx input inX.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

10 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

2.4.3 Gradient values via internal evaluation

If the control parameterg availability = 1 (see Section 2.2.3), then the argumenteval G must be present when
calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the value of the
gradient the objective function∇x f (x). The routine must be specified as

SUBROUTINE eval_G(status, X, userdata, G)

whose arguments are as follows:

status is a scalarINTENT(OUT) argument of type defaultINTEGER that should be set to 0 if the routine has been able
to evaluate the gradient of the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorx.

userdata is a scalarINTENT(INOUT) argument of typeNLPT userdata type whose components may be used to
communicate user-supplied data to and from the subroutineseval F, eval C, eval G, eval J eval H, eval Jv,
andeval Hv (see Section 2.2.7).

G is a rank-oneINTENT(OUT) argument of type defaultREAL (double precision inGALAHAD CHECK double), whose
components should be set to the values of the gradient of the objective function∇x f (x) evaluated at the vector
x input inX.

2.4.4 Jacobian values via internal evaluation

If the control parameterJ availability = 1 (see Section 2.2.3), then the argumenteval J must be present when
calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the values of the
Jacobian of the constraint function∇xc(x). The routine must be specified as

SUBROUTINE eval_J(status, X, userdata, Jval)

whose arguments are as follows:

status is a scalarINTENT(OUT) argument of type defaultINTEGER that should be set to 0 if the routine has been
able to evaluate the Jacobian of the constraint function andto a non-zero value if the evaluation has not been
possible.

X is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorx.

userdata is a scalarINTENT(INOUT) argument of typeNLPT userdata type whose components may be used to
communicate user-supplied data to and from the subroutineseval F, eval C, eval G, eval J eval H, eval Jv,
andeval Hv (see Section 2.2.7).

Jval is a scalarINTENT(OUT) argument of type defaultREAL (double precision inGALAHAD CHECK double), whose
components should be set to the values of the Jacobian of the constraint function∇xc(x) evaluated at the vector
x input inX. The values should be input in the same order as that in which the array indices were given innlp%J.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 11

CHECK GALAHAD

2.4.5 Hessian values via internal evaluation

If the control parameterH availability = 1 (see Section 2.2.3), then the argumenteval H must be present when
calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the values of the
Hessian of the Lagrangian∇xxL(x,y). The routine must be specified as

SUBROUTINE eval_H(status, X, Y, userdata, Hval)

whose arguments are as follows:

status is a scalarINTENT(OUT) argument of type defaultINTEGER, that should be set to 0 if the routine has been
able to evaluate the Hessian of the Lagrangian and to a non-zero value if the evaluation has not been possible.

X is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorx.

Y is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the dual vectory.

userdata is a scalarINTENT(INOUT) argument of typeNLPT userdata type whose components may be used to
communicate user-supplied data to and from the subroutineseval F, eval C, eval G, eval J eval H, eval Jv,
andeval Hv (see Section 2.2.7).

Hval is a scalarINTENT(OUT) argument of type defaultREAL (double precision inGALAHAD CHECK double), whose
components should be set to the values of the Hessian of the Lagrangian∇xxL(x,y) evaluated at the vector(x,y)
input in X andY. The values should be input in the same order as that in which the array indices were given in
nlp%H.

2.4.6 Jacobian-vector products via internal evaluation

If the control parameterJ availability = 3 (see Section 2.2.3), then the argumenteval Jv must be present when
calling GALAHAD CHECK verify and the user must provide a subroutine of that name to computeproducts of the
Jacobian of the constraint function (and its transpose) of the formu+∇xc(x)v andu+∇xc(x)T v. The routine must
be specified as

SUBROUTINE eval_Jv(status, userdata, transpose, U, V, X)

whose arguments are as follows:

status is a scalarINTENT(OUT) argument of type defaultINTEGER that should be set to 0 if the routine has been able
to perform the required calculation (seetranspose below) and to a non-zero value if the computation has not
been possible.

userdata is a scalarINTENT(INOUT) argument of typeNLPT userdata type whose components may be used to
communicate user-supplied data to and from the subroutineseval F, eval C, eval G, eval J eval H, eval Jv,
andeval Hv (see Section 2.2.7).

transpose is a scalarINTENT(IN) argument of type defaultLOGICAL. If transpose = .FALSE., then the user should
evaluate the sumu+∇xc(x)v. If transpose = .TRUE., then the user should evaluate the sumu+∇xc(x)T v.

U is a rank-oneINTENT(INOUT) array argument of type defaultREAL (double precision inGALAHAD CHECK -
double) whose components on input contain the vectoru and on output contains either the sumu+∇xc(x)v or
u+∇xc(x)T v depending on the value oftranspose given above.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

12 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

V is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorv.

X is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorx.

2.4.7 Hessian-vector products via internal evaluation

If the control parameterH availability = 3 (see Section 2.2.3), then the argumenteval Hv must be present
when callingGALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the sum
u+∇xxL(x,y)v involving the product of the Hessian of the Lagrangian∇xxL(x,y). The routine must be specified
as

SUBROUTINE eval_Hv(status, userdata, U, V, X, Y)

whose arguments are as follows:

status is a scalarINTENT(OUT) argument of type defaultINTEGER that should be set to 0 if the routine has been able
to perform the required calculation and to a non-zero value if the computation has not been possible.

userdata is a scalarINTENT(INOUT) argument of typeNLPT userdata type whose components may be used to
communicate user-supplied data to and from the subroutineseval F, eval C, eval G, eval J eval H, eval Jv,
andeval Hv (see Section 2.2.7).

U is a rank-oneINTENT(INOUT) array argument of type defaultREAL (double precision inGALAHAD CHECK -
double) whose components on input contain the vectoru and on output the sumu+∇xxL(x,y)v.

V is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorv.

X is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectorx.

Y is a rank-oneINTENT(IN) array argument of type defaultREAL (double precision inGALAHAD CHECK double)
whose components contain the vectory.

2.5 Reverse Communication Information

A positive value ofinform%status on exit fromCHECK verify indicates thatGALAHAD CHECK verify is seeking
further information—this will happen if the user has chosennot to evaluate function or derivative values internally
(see Sections 2.2.3 and 2.4). The user should compute the required information and re-enterGALAHAD CHECK verify
with all arguments (except those specifically mentioned below) unchanged.

Possible values ofinform%status and the information required are

2. The user should compute the objective function valuef (x) at the pointx indicated indata%RC%X. The required
value should be set indata%RC%F. If the user is unable to evaluatef (x)—for instance, if the function is undefined
at x—the user need not setdata%RC%F, but should then setinform%status to any negative value. Otherwise,
the value ofinform%status should remain unchanged.

3. The user should compute the constraint function valuec(x) at the pointx indicated indata%RC%X. The required
value should be set indata%RC%C. If the user is unable to evaluatec(x)—for instance, if the function is undefined
at x—the user need not setdata%RC%C, but should then setinform%status to any negative value. Otherwise,
the value ofinform%status should remain unchanged.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 13

CHECK GALAHAD

4. The user should compute the gradient of the objective function ∇x f (x) at the pointx indicated indata%RC%X.
The value of thei-th component of the gradient should be set indata%RC%G(i) for i = 1, . . . ,n. If the user is
unable to evaluate a component of∇x f (x)—for instance, if a component of the gradient is undefined atx—the
user need not setdata%RC%G, but should then setinform%status to a negative value. Otherwise, the value of
inform%status should remain unchanged.

5. The user should compute the Jacobian of the constraint function ∇xc(x) at the pointx indicated indata%RC%X.
The l-th component of the Jacobian stored according to the schemeused to inputnlp%J (see Section 2.2.2)
should be set indata%RC%Jval(l) for l = 1, . . . , nlp%J%ne. If the user is unable to evaluate a component of
∇xc(x)—for instance, if a component of the Jacobian is undefined atx—the user need not setdata%RC%Jval,
but should then setinform%status to a negative number. Otherwise, the value ofinform%status should
remain unchanged.

6. The user should compute the valueu+∇xc(x)v, which requires a product of the Jacobian of the constraint
function∇xc(x) at the pointx with the vectorv; the vectorsx, u, andv are contained indata%RC%X, data%RC%U,
anddata%RC%V, respectively. On exit, the resulting vectoru+∇xc(x)v should be stored indata%RC%U. If the
user is unable to evaluate the product—for instance, if a component of the Jacobian is undefined atx—the
user need not setdata%RC%U, but should then setinform%status to a negative value. Otherwise, the value of
inform%status should remain unchanged.

7. The user should compute the valueu+∇xc(x)T v, which requires a product of the transpose of the Jacobian
of the constraint function∇xc(x) at the pointx with the vectorv; the vectorsx, u, andv are contained in
data%RC%X, data%RC%U, anddata%RC%V, respectively. On exit, the resulting vectoru+∇xc(x)T v should be
stored indata%RC%U. If the user is unable to evaluate the product—for instance,if a component of the Jacobian
is undefined atx—the user need not setdata%RC%U, but should then setinform%status to a negative value.
Otherwise, the value ofinform%status should remain unchanged.

8. The user should compute the Hessian of the Lagrangian∇xxL(x,y) at the point(x,y) indicated indata%RC%X
anddata%RC%Y. The l-th component of the Hessian stored according to the scheme used to inputnlp%H (see
Section 2.2.2) should be set indata%RC%Hval(l) for l = 1, . . . , nlp%H%ne. If the user is unable to evalu-
ate a component of∇xxL(x,y)—for instance, if a component of the Hessian is undefined at(x,y)—the user
need not setdata%RC%Hval, but should then setinform%status to a negative value. Otherwise, the value of
inform%status should remain unchanged.

9. The user should compute the valueu+∇xxL(x,y)v, which requires a product of the Hessian of the Lagrangian
∇xxL(x,y) at the point(x,y)with the vectorv; the vectorsx, y, u, andv are contained indata%RC%X, data%RC%Y,
data%RC%U, anddata%RC%V, respectively. On exit, the resulting vectoru+∇xxL(x,y)v should be stored in
data%RC%U. If the user is unable to evaluate the product—for instance,if a component of the Hessian is un-
defined at(x,y)—the user need not setdata%RC%U, but should then setinform%status to a negative value.
Otherwise, the value ofinform%status should remain unchanged.

2.6 Warning and error messages

A negative value ofinform%status on exit fromCHECK verify or CHECK terminate indicates that an error has
occurred. No further calls should be made until the error hasbeen corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unitcontrol%error, and the
returned allocation status and a string containing the nameof the offending array are held ininform%alloc -
status andinform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unitcontrol%error and
the returned allocation status and a string containing the name of the offending array are held ininform%alloc -
status andinform%bad alloc, respectively.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

14 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

-3. Either one of the restrictionsnlp%n > 0 or nlp%m ≥ 0 is violated, or the requirement thatnlp%J type and
nlp%H type contain a relevant string’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’SPARSE BY COLUMNS’,
or ’DIAGONAL’ is not satisfied.

-50. The user has calledCHECK verify with inform%status < 0, which indicates that the user was not able to
perform a requested computation needed during reverse communication.

-51. The user has calledCHECK verify with inform%status = 0, which should never happen. The user should
only setinform%status in two situations:inform%status = 1 prior to the initial call toCHECK verify, and
inform%status < 0 when reverse communication is being used and the user is unable to perform the required
computation as indicated by the value ofinform%status on return fromCHECK verify (see Section 2.5). The
user should not changeinform%status for any other reason.

-55. The user has input an invalid value for at least one of the control parametersf availability, c availability,
g availability, J availability, or H availability as described in Section 2.2.3.

-56. Based on the values of the control parametersf availability, c availability, g availability, J availa-
bility, andH availability (see Section 2.2.3), at least one optional dummy subroutineis missing in the call
to CHECK verify.

-57. At least one component ofnlp%X l or nlp%X u is inappropriate (see Section 2.2.2).

-58. A user supplied function (see Sections 2.4.1–2.4.7) returnedinform%status 6= 0, implying that the function
computation could not be performed at the required point.

2.7 Further features

In this section, we describe an alternative means of settingcontrol parameters—that is components of the variable
control of type CHECK control type (see Section 2.2.3)—by reading an appropriate data specification file using
the subroutineCHECK read specfile. This facility is useful as it allows a user to changeCHECK control parameters
without editing and recompiling programs that callCHECK.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command
occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify
a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.
All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not
contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more
than 30 characters, and each line of the specfile is limited to80 characters, including the blanks separating keyword
and value.

The portion of the specification file used byCHECK read specfile must start with a ”BEGIN CHECK” command
and end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by CHECK_read_specfile ..)
BEGIN CHECK

keyword value
.......
keyword value

END
(.. lines ignored by CHECK_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN CHECK” and “END” delimiter
command lines may contain additional (trailing) strings solong as such strings are separated by one or more blanks,
so that lines such as

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 15

CHECK GALAHAD

BEGIN CHECK SPECIFICATION

and

END CHECK SPECIFICATION

are acceptable. Furthermore, between the “BEGIN CHECK” and “END” delimiters, specification commands may occur
in any order. Blank lines and lines whose first non-blank character is! or * are ignored. The content of a line after a!
or * character is also ignored (as is the! or * character itself). This provides an easy manner to ”commentout” some
specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical, or real. Integer and real
values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for
logical parameters are ”ON”, ” TRUE”, ” .TRUE.”, ” T”, ” YES”, ” Y”, or ”OFF”, ” NO”, ” N”, ” FALSE”, ” .FALSE.” and ”F”.
Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input whenCHECK read specfile is called, and the associated device
number passed to the routine in device (see below). Note thatthe corresponding file isREWINDed, which makes it
possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed
by CHECK read specfile.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL CHECK_read_specfile(control, device)

control is a scalarINTENT(INOUT)argument of typeCHECK control type (see Section 2.2.3). Default values
should have already been set, perhaps by callingCHECK initialize. On exit, individual components of
control may have been changed according to the commands found in the specfile. Specfile commands and
the components (see Section 2.2.3) ofcontrol that they affect are given in Table 2.1.

command component ofcontrol value type
error-printout-device %error integer
printout-device %out integer
print-level %print level integer
verification-level %verify level integer
f-availability %f availability integer
c-availability %c availability integer
g-availability %G availability integer
J-availability %J availability integer
H-availability %H availability integer
check-gradient %checkG logical
check-Jacobian %checkJ logical
check-Hessian %checkH logical
deallocate-error-fatal %deallocate error fatal logical

Table 2.1: Specfile commands and associated components ofcontrol.

device is a scalarINTENT(IN)argument of type defaultINTEGER, that must be set to the unit number on which the
specfile has been opened. Ifdevice is not open,control will not be altered and execution will continue, but
an error message will be printed on unitcontrol%error.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

16 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

2.8 Information printed

If control%print level is positive, information about the derivative verificationwill be printed on unitcontrol-
%out, providedcontrol%out > 0. If control%print level = 1, a basic summary of the derivative checking is
produced. Ifcontrol%print level = 2, then in addition to the above there is detailed output of the derivative
verification, control parameters are printed, and basic matrix data is produced. Ifcontrol%print level = 3, then
in addition to the above, full matrix data is printed. Finally, control%print level ≥ 4 is used for debugging and in
addition to the above also prints private data used during the verification process.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: CHECK verify and CHECK terminate call the GALAHAD packagesGALAHAD MOP,
andGALAHAD SPACE.

Input/output: Output is under control of the argumentscontrol%error, control%out andcontrol%print level.

Restrictions: nlp%n > 0 andnlp%m ≥ 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

Finite difference approximations are used to numerically “verify” requested derivatives. Ifverify level = 1, we
perform a “cheap” check of the gradient of the objective function by comparing(f (x)− f (x+αs))/α with ∇x f (x)T s
for some appropriately chosen vectors and scalar 0< α ≪ 1. Similarly, for the Jacobian of the constraints and
the Hessian of the Lagrangian, we compare(c(x)− c(x+αs))/α to ∇xc(x)s and(∇xL(x,y)−∇xL(x+αs,y))/α to
∇xxL(x,y)s, respectively. Ifverify level= 2, we perform an “expensive” verification of the gradient of the objective
function by comparing(f (x)− f (x+αei))/α with [∇x f (x)]i for i = 1, . . . ,n, whereei is the ith coordinate vector.
Similarly, for the Jacobian of the constraints and the Hessian of the Lagrangian, we compare[(c(x)−c(x+αej))]i/α
to [∇xc(x)]i j and[(∇xL(x,y)−∇xL(x+αej,y))]i/α to [∇xxL(x,y)]i j, respectively.

5 EXAMPLES OF USE

Suppose we wish to perform an “expensive” check of the derivatives associated with the objective functionf (x) =
x1+ x3

2/3 and the constraint functionc(x) = (x1+ x2
2+ x3

3+ x3x2
2,−x4

2) at the pointx = (4,3,2) andy = (2,3), with
boundsxl = (−5,−5,−5) andxu = (5,5,5). We may use the following code:

! THIS VERSION: GALAHAD 2.4 - 4/02/2008 AT 09:00 GMT.
PROGRAM GALAHAD_check_example

USE GALAHAD_SMT_double ! double precision version
USE GALAHAD_NLPT_double ! double precision version
USE GALAHAD_MOP_double ! double precision version
USE GALAHAD_CHECK_double ! double precision version
IMPLICIT NONE
integer, parameter :: wp = KIND(1.0D+0) ! Define the working precision
type(NLPT_problem_type) :: nlp

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 17

CHECK GALAHAD

type(NLPT_userdata_type) :: userdata
type(CHECK_data_type) :: data
type(CHECK_control_type) :: control
type(CHECK_inform_type) :: inform
integer :: stat, Jne, Hne, m, n
real (kind = wp), parameter :: one = 1.0_wp, two = 2.0_wp, three = 3.0_wp
real (kind = wp), parameter :: four = 4.0_wp, five = 5.0_wp
external funF, funC, funG, funJ, funH
nlp%m = 2 ; nlp%n = 3 ; m = nlp%m ; n = nlp%n
nlp%J%m = 2 ; nlp%J%n = 3 ; nlp%J%ne = 4 ; Jne = nlp%J%ne
nlp%H%m = 3 ; nlp%H%n = 3 ; nlp%H%ne = 3 ; Hne = nlp%H%ne
call SMT_put(nlp%J%id, ’Toy 2x3 matrix’, stat);
call SMT_put(nlp%J%type, ’COORDINATE’, stat)
call SMT_put(nlp%H%id, ’Toy 3x3 hessian matrix’, stat);
call SMT_put(nlp%H%type, ’COORDINATE’, stat)
allocate(nlp%G(n), nlp%C(m), nlp%X(n), nlp%X_l(n), nlp%X_u(n), nlp%Y(m))
allocate(nlp%J%row(Jne), nlp%J%col(Jne), nlp%J%val(Jne))
allocate(nlp%H%row(Hne), nlp%H%col(Hne), nlp%H%val(Hne))
nlp%J%row = (/ 1, 1, 1, 2 /) ; nlp%J%col = (/ 1, 2, 3, 2 /)
nlp%H%row = (/ 2, 3, 3 /) ; nlp%H%col = (/ 2, 2, 3 /)
nlp%X = (/ four, three, two /) ; nlp%X_l = -five ; nlp%X_u = five ; nlp%Y = (/ two, three /)
call CHECK_initialize(control) ; control%print_level = 3
inform%status = 1
call CHECK_verify(nlp, data, control, inform, userdata, funF, funC, funG, funJ, funH)
call CHECK_terminate(data, control, inform)

END PROGRAM GALAHAD_check_example

SUBROUTINE funF(status, X, userdata, F)
USE GALAHAD_NLPT_double
INTEGER, PARAMETER :: wp = KIND(1.0D+0)
INTEGER, INTENT(OUT) :: status
REAL (kind = wp), INTENT(IN), DIMENSION(:) :: X
REAL (kind = wp), INTENT(OUT) :: F
TYPE (NLPT_userdata_type), INTENT(INOUT) :: userdata
F = X(1) + X(2)**3 / 3.0_wp
status = 0
RETURN

END SUBROUTINE funF
SUBROUTINE funC(status, X, userdata, C)
USE GALAHAD_NLPT_double
INTEGER, PARAMETER :: wp = KIND(1.0D+0)
INTEGER, INTENT(OUT) :: status
REAL (kind = wp), INTENT(IN), DIMENSION(:) :: X
REAL (kind = wp), DIMENSION(:), INTENT(OUT) :: C
TYPE (NLPT_userdata_type), INTENT(INOUT) :: userdata
C(1) = X(1) + X(2)**2 + X(3)**3 + X(3)*X(2)**2
C(2) = -X(2)**4
status = 0
RETURN

END SUBROUTINE funC
SUBROUTINE funG(status, X, userdata, G)
USE GALAHAD_NLPT_double
INTEGER, PARAMETER :: wp = KIND(1.0D+0)
INTEGER, INTENT(OUT) :: status
REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

18 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: G
TYPE (NLPT_userdata_type), INTENT(INOUT) :: userdata
G(1) = 1.0_wp
G(2) = X(2)**2
G(3) = 0.0_wp
status = 0
RETURN

END SUBROUTINE funG
SUBROUTINE funJ(status, X, userdata, Jval)

USE GALAHAD_NLPT_double
INTEGER, PARAMETER :: wp = KIND(1.0D+0)
INTEGER, INTENT(OUT) :: status
REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X
REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: Jval
TYPE (NLPT_userdata_type), INTENT(INOUT) :: userdata
Jval(1) = 1.0_wp
Jval(2) = 2.0_wp * X(2) * (1.0_wp + X(3))
Jval(3) = 3.0_wp * X(3)**2 + X(2)**2
Jval(4) = -4.0_wp * X(2)**3
status = 0
RETURN

END SUBROUTINE funJ
SUBROUTINE funH(status, X, Y, userdata, Hval)

USE GALAHAD_NLPT_double
INTEGER, PARAMETER :: wp = KIND(1.0D+0)
INTEGER, INTENT(OUT) :: status
REAL (kind = wp), DIMENSION(:), INTENT(IN) :: X
REAL (kind = wp), DIMENSION(:), INTENT(IN) :: Y
REAL (kind = wp), DIMENSION(:), INTENT(OUT) ::Hval
TYPE (NLPT_userdata_type), INTENT(INOUT) :: userdata
Hval(1) = 2.0_wp * (X(2) - Y(1) - Y(1)*X(3) + 6.0_wp*Y(2)*X(2)**2)
Hval(2) = -2.0_wp * Y(1) * X(2)
Hval(3) = -6.0_wp * Y(1) * X(3)
status = 0
RETURN

END SUBROUTINE funH

The code produces the following output:

--
-------------------- BEGIN: CHECK_verify --------------------
--

EXPENSIVE VERIFICATION OF THE GRADIENT G(X)

Component Ok Difference Value Error
-------------- --- ---------------- ---------------- ----------------
G(1) OK 9.999999891E-01 1.000000000E+00 5.437063829E-09
G(2) OK 9.000000276E+00 9.000000000E+00 2.755274031E-08
G(3) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

EXPENSIVE VERIFICATION OF THE JACOBIAN C(X)

Component Ok Difference Value Error
-------------- --- ---------------- ---------------- ----------------

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 19

CHECK GALAHAD

J(1, 1) OK 9.999999891E-01 1.000000000E+00 5.437063829E-09
J(2, 1) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00
J(1, 2) OK 1.800000025E+01 1.800000000E+01 1.328100896E-08
J(2, 2) OK -1.080000049E+02 -1.080000000E+02 4.540609864E-08
J(1, 3) OK 2.100000052E+01 2.100000000E+01 2.356511020E-08
J(2, 3) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

EXPENSIVE VERIFICATION OF THE HESSIAN H(X,Y)

Component Ok Difference Value Error
-------------- --- ---------------- ---------------- ----------------
H(1, 1) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00
H(2, 1) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00
H(3, 1) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00
H(1, 2) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00
H(2, 2) OK 3.180000098E+02 3.180000000E+02 3.083032415E-08
H(3, 2) OK -1.200000017E+01 -1.200000000E+01 1.294047027E-08
H(1, 3) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00
H(2, 3) OK -1.200000017E+01 -1.200000000E+01 1.294047027E-08
H(3, 3) OK -2.400000049E+01 -2.400000000E+01 1.943240183E-08

| SUMMARY |
(Verify : Expensive)

THE GRADIENT OF THE OBJECTIVE FUNCTION IS ---- [OK]

THE JACOBIAN OF THE CONSTRAINT FUNCTION IS --- [OK]

THE HESSIAN OF THE LAGRANGIAN FUNCTION IS ---- [OK]

CONTROL PARAMETERS

checkG = T f_available = 1 deall_error_fatal = F
checkJ = T c_available = 1 print_level = 3
checkH = T g_available = 1 verify_level = 2
error = 6 J_available = 1 out = 6

H_available = 1

--
MATRIX DATA

J%type --- COORDINATE
J%id --- Toy 2x3 matrix
H%type --- COORDINATE
H%id --- Toy 3x3 hessian matrix

m = 2
n = 3

J%row J%col J%val

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

20 CHECK (May 8, 2013) GALAHAD

GALAHAD CHECK

----- ----- -----------------
1 1 1.0000000000E+00
1 2 1.8000000571E+01
1 3 2.1000001142E+01
2 2 -1.0800000000E+02

H%row H%col H%val
----- ----- ----------------

2 2 3.1800000000E+02
3 2 -1.2000000000E+01
3 3 -2.4000000000E+01

EXIT STATUS : 0

--
-------------------- END: CHECK_verify --------------------
--

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD CHECK (May 8, 2013) 21

