
GALAHAD QP

USER DOCUMENTATION GALAHAD Optimization Library version 2.6

1 SUMMARY

This package provides a common interface to other GALAHAD packages for solving the quadratic programming

problem

minimize q(x) = 1
2 xT Hx+ gTx+ f

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m,

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the n by n symmetric matrix H, the vectors g, ai, cl , cu, xl , xu and the scalar f are given. Any of the constraint

bounds cl
i , cu

i , xl
j and xu

j may be infinite. Full advantage is taken of any zero coefficients in the matrix H or the matrix

A of vectors ai.

ATTRIBUTES — Versions: GALAHAD QP single, GALAHAD QP double. Uses: GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD SPACE, GALAHAD TOOLS, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT, GALAHAD QPD, GALAHAD -

SORT, GALAHAD SCALE, GALAHAD PRESOLVE. GALAHAD MOP, GALAHAD QPA, GALAHAD QPB, GALAHAD QPC, GALAHAD CQP,

GALAHAD DQP, Date: January 2011. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95

+ TR 15581 or Fortran 2003. Parallelism: Some options may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version

USE GALAHAD QP single

Double precision version

USE GALAHAD QP double

If it is required to use both modules at the same time, the derived types SMT type, QPT problem type, QP time type,

QP control type, QP inform type and QP data type (Section 2.3) and the subroutines QP initialize, QP solve,

QP terminate, (Section 2.4) and QP read specfile (Section 2.6) must be renamed on one of the USE statements.

2.1 Matrix storage formats

When they are explicitly available, Both the Hessian matrix H and the constraint Jacobian A, the matrix whose rows

are the vectors aT
i , i = 1, . . . ,m, may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD QP (October 15, 2014) 1

QP GALAHAD

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H (thus

requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in

the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square A.

2.2 OpenMP

OpenMP may be used by the GALAHAD QP package to provide parallelism for some solver options in shared memory

environments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP

must be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number

of threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

The code may be compiled and run in serial mode.

2.3 The derived data types

Six derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and H. The components of SMT TYPE used here are:

m is a scalar component of type default INTEGER, that holds the number of rows in the matrix.

n is a scalar component of type default INTEGER, that holds the number of columns in the matrix.

ne is a scalar variable of type default INTEGER, that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.3.2).

val is a rank-one allocatable array of type default REAL (double precision in GALAHAD QP double) and dimension at

least ne, that holds the values of the entries. Each pair of off-diagonal entries hi j = h ji of a symmetric matrix H

is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse co-ordinate

or row-wise schemes will be summed.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

2 QP (October 15, 2014) GALAHAD

GALAHAD QP

row is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may the column indices

of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type default INTEGER, and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.3.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

n is a scalar variable of type default INTEGER, that holds the number of optimization variables, n.

m is a scalar variable of type default INTEGER, that holds the number of general linear constraints, m.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H when it is available explicitly. The following

components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type QP problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type default INTEGER, that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type default REAL (double precision in GALAHAD QP double), that holds

the values of the entries of the lower triangular part of the Hessian matrix H in any of the storage schemes

discussed in Section 2.1.

H%row is a rank-one allocatable array of type default INTEGER, that holds the row indices of the lower triangu-

lar part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any

of the other three schemes.

H%col is a rank-one allocatable array variable of type default INTEGER, that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type default INTEGER, that holds the starting posi-

tion of each row of the lower triangular part of H, as well as the total number of entries plus one, in the

sparse row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are

used.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD QP (October 15, 2014) 3

QP GALAHAD

G is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QP double),

that holds the gradient g of the linear term of the quadratic objective function. The j-th component of G,

j = 1, . . . ,n, contains g j.

f is a scalar variable of type default REAL (double precision in GALAHAD QP double), that holds the constant term,

f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A when it is available explicitly. The following

components are used:

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert the

required keyword into A%type. Once again, if prob is of derived type QP problem type and involves a

Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’)

A%ne is a scalar variable of type default INTEGER, that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

A%val is a rank-one allocatable array of type default REAL (double precision in GALAHAD QP double), that holds

the values of the entries of the Jacobian matrix A in any of the storage schemes discussed in Section 2.1.

A%row is a rank-one allocatable array of type default INTEGER, that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type default INTEGER, that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type default INTEGER, that holds the starting po-

sition of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage

scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

C l is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD QP double),

that holds the vector of lower bounds cl on the general constraints. The i-th component of C l, i = 1, . . . ,m,

contains cl
i . Infinite bounds are allowed by setting the corresponding components of C l to any value smaller

than -infinity, where infinity is a component of the control array control (see Section 2.3.3).

C u is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD QP double),

that holds the vector of upper bounds cu on the general constraints. The i-th component of C u, i = 1, . . . ,m,

contains cu
i . Infinite bounds are allowed by setting the corresponding components of C u to any value larger than

infinity, where infinity is a component of the control array control (see Section 2.3.3).

X l is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QP double),

that holds the vector of lower bounds xl on the the variables. The j-th component of X l, j = 1, . . . ,n, contains

xl
j. Infinite bounds are allowed by setting the corresponding components of X l to any value smaller than

-infinity, where infinity is a component of the control array control (see Section 2.3.3).

X u is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QP double),

that holds the vector of upper bounds xu on the variables. The j-th component of X u, j = 1, . . . ,n, contains

xu
j . Infinite bounds are allowed by setting the corresponding components of X u to any value larger than that

infinity, where infinity is a component of the control array control (see Section 2.3.3).

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

4 QP (October 15, 2014) GALAHAD

GALAHAD QP

X is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QP double),

that holds the values x of the optimization variables. The j-th component of X, j = 1, . . . ,n, contains x j.

C is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD QP double),

that holds the values Ax of the constraints. The i-th component of C, i = 1, . . . ,m, contains aT
i x ≡ (Ax)i.

Y is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD QP double),

that holds the values y of estimates of the Lagrange multipliers corresponding to the general linear constraints

(see Section 4). The i-th component of Y, i = 1, . . . ,m, contains yi.

Z is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QP double),

that holds the values z of estimates of the dual variables corresponding to the simple bound constraints (see

Section 4). The j-th component of Z, j = 1, . . . ,n, contains z j .

2.3.3 The derived data type for holding control parameters

The derived data type QP control type is used to hold controlling data. Default values may be obtained by call-

ing QP initialize (see Section 2.4.1), while components may also be changed by calling QP read specfile (see

Section 2.6.1). The components of QP control type are:

error is a scalar variable of type default INTEGER, that holds the stream number for error messages. Printing of error

messages in QP solve and QP terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type default INTEGER, that holds the stream number for informational messages. Printing

of informational messages in QP solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type default INTEGER, that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

maxit is a scalar variable of type default INTEGER, that holds the maximum number of iterations which will be

allowed in QP solve. The default is maxit = 1000.

scale is a scalar variable of type default INTEGER, that is used to control problem scaling prior to solution. Possible

values and their consequences are:

0. no scaling will be performed

1. scaling will be performed to try to map all variables and constraints to have values between 0 and 1.

2. the symmetric Curtis-Reid method will be applied to normalize the rows of the matrix

K =

(

H AT

A 0

)

.

3. the unsymmetric Curtis-Reid method will be applied to normalize the rows and columns of A.

4. scaling will be applied to equilibrate the norms of the rows of A.

5. strategy 2 will be followed by strategy 4.

6. strategy 3 will be followed by strategy 4.

7. scaling will be applied to equilibrate the rows and columns of K using the Sinkhorn-Knopp strategy.

If the negative of one of the above values is given, scaling will be performed prior to (rather than after) any

pre-solving (see %presolve below).

While scaling may improve the performance of the algorithm, it might also degrade it, so scaling should be

used with caution. The default is scale = 0.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD QP (October 15, 2014) 5

QP GALAHAD

infinity is a scalar variable of type default REAL (double precision in GALAHAD QP double), that is used to specify

which constraint bounds are infinite. Any bound larger than infinity in modulus will be regarded as infinite.

The default is infinity = 1019.

presolve is a scalar variable of type default LOGICAL, that must be set .TRUE. if a pre-solve phase is to be applied to

the data prior to the actual solution and .FALSE. otherwise. Pre-solving aims to reduce the size of the problem

using the data to deduce at optimality which variables must be active, which constraints are inactive, etc. This

may sometimes result in a worse-conditioned problem. The default is presolve = .FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

quadratic programming solver is a scalar variable of type default CHARACTER and length 30, that specifies which

quadratic programming solver to use. Possible values are

qpa if the GALAHAD active-set solver QPA is desired.

qpb if the GALAHAD interior-point solver QPB is desired.

qpc if the GALAHAD interior-point/active-set crossover solver QPC is desired.

cqp if the GALAHAD convex interior-point solver CQP is desired.

dqp if the GALAHAD strictly-convex dual gradient projection solver DQP is desired.

Other solvers may be added in the future.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

SCALE control is a scalar variable of type SCALE control type whose components are used to control any problem

scaling performed by the package GALAHAD SCALE. See the specification sheet for the package GALAHAD SCALE

for details, and appropriate default values.

PRESOLVE control is a scalar variable of type PRESOLVE control type whose components are used to control any

pre-solving performed by the package GALAHAD PRESOLVE. See the specification sheet for the package GALAH-

AD PRESOLVE for details, and appropriate default values.

QPA control is a scalar variable of type QPA control type whose components are used to control the package GA-

LAHAD QPA if selected by quadratic programming solver (see above). See the specification sheet for the

package GALAHAD QPA for details, and appropriate default values.

QPB control is a scalar variable of type QPB control type whose components are used to control the package GA-

LAHAD QPB if selected by quadratic programming solver (see above). See the specification sheet for the

package GALAHAD QPB for details, and appropriate default values.

QPC control is a scalar variable of type QPC control type whose components are used to control the package GA-

LAHAD QPC if selected by quadratic programming solver (see above). See the specification sheet for the

package GALAHAD QPC for details, and appropriate default values.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

6 QP (October 15, 2014) GALAHAD

GALAHAD QP

CQP control is a scalar variable of type CQP control type whose components are used to control the package GA-

LAHAD CQP if selected by quadratic programming solver (see above). See the specification sheet for the

package GALAHAD CQP for details, and appropriate default values.

DQP control is a scalar variable of type DQP control type whose components are used to control the package GA-

LAHAD DQP if selected by quadratic programming solver (see above). See the specification sheet for the

package GALAHAD DQP for details, and appropriate default values.

2.3.4 The derived data type for holding timing information

The derived data type QP time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of QP time type are:

total is a scalar variable of type default REAL (double precision in GALAHAD QP double), that gives the total CPU

time spent in the package.

presolve is a scalar variable of type default REAL (double precision in GALAHAD QP double), that gives the CPU

time spent pre-solving the problem.

scale is a scalar variable of type default REAL (double precision in GALAHAD QP double), that gives the CPU time

spent scaling the problem.

solve is a scalar variable of type default REAL (double precision in GALAHAD QP double), that gives the CPU time

spent actually solving the quadratic program.

clock total is a scalar variable of type default REAL (double precision in GALAHAD QP double), that gives the total

elapsed system clock time spent in the package.

clock presolve is a scalar variable of type default REAL (double precision in GALAHAD QP double), that gives the

elapsed system clock time spent pre-solving the problem.

clock scale is a scalar variable of type default REAL (double precision in GALAHAD QP double), that gives the

elapsed system clock time spent scaling the problem.

clock solve is a scalar variable of type default REAL (double precision in GALAHAD QP double), that gives the

elapsed system clock time spent actually solving the quadratic program.

2.3.5 The derived data type for holding informational parameters

The derived data type QP inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of QP inform type are:

status is a scalar variable of type default INTEGER, that gives the exit status of the algorithm. See Section 2.5 for

details.

alloc status is a scalar variable of type default INTEGER, that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

obj is a scalar variable of type default REAL (double precision in GALAHAD QP double), that holds the value of the

objective function at the best estimate of the solution found.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD QP (October 15, 2014) 7

QP GALAHAD

primal infeasibility is a scalar variable of type default REAL (double precision in GALAHAD QP double), that

holds the norm of the violation of primal optimality (see Section 2.3.4) at the best estimate of the solution

found.

dual infeasibility is a scalar variable of type default REAL (double precision in GALAHAD QP double), that holds

the norm of the violation of dual optimality (see Section 2.3.4) at the best estimate of the solution found.

complementary slackness is a scalar variable of type default REAL (double precision in GALAHAD QP double), that

holds the norm of the violation of complementary slackness (see Section 2.3.4) at the best estimate of the

solution found.

time is a scalar variable of type QP time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.3.4).

SCALE inform is a scalar variable of type SCALE inform type whose components are used to provide information

about any problem scaling performed by the package GALAHAD SCALE. See the specification sheet for the pack-

age GALAHAD SCALE for details.

PRESOLVE inform is a scalar variable of type PRESOLVE inform type whose components are used to provide infor-

mation about any pre-solving performed by the package GALAHAD PRESOLVE. See the specification sheet for the

package GALAHAD PRESOLVE for details.

QPA inform is a scalar variable of type QPA inform type whose components are used to provide information about

the progress of the quadratic programming package GALAHAD QPA, iff used. See the specification sheet for the

package GALAHAD QPA for details.

QPB inform is a scalar variable of type QPB inform type whose components are used to provide information about

the progress of the quadratic programming package GALAHAD QPB, iff used. See the specification sheet for the

package GALAHAD QPB for details.

QPC inform is a scalar variable of type QPC inform type whose components are used to provide information about

the progress of the quadratic programming package GALAHAD QPC, iff used. See the specification sheet for the

package GALAHAD QPC for details.

CQP inform is a scalar variable of type CQP inform type whose components are used to provide information about

the progress of the quadratic programming package GALAHAD CQP, iff used. See the specification sheet for the

package GALAHAD CQP for details.

DQP inform is a scalar variable of type DQP inform type whose components are used to provide information about

the progress of the quadratic programming package GALAHAD DQP, iff used. See the specification sheet for the

package GALAHAD DQP for details.

2.3.6 The derived data type for holding problem data

The derived data type QP data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of QP procedures. This data should be preserved, untouched, from the initial

call to QP initialize to the final call to QP terminate.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.6 for further features):

1. The subroutine QP initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

8 QP (October 15, 2014) GALAHAD

GALAHAD QP

2. The subroutine QP solve is called to solve the problem.

3. The subroutine QP terminate is provided to allow the user to automatically deallocate array components of the

private data, allocated by QP solve, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL QP initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type QP data type (see Section 2.3.6). It is used to hold data about the

problem being solved.

control is a scalar INTENT(OUT) argument of type QP control type (see Section 2.3.3). On exit, control contains

default values for the components as described in Section 2.3.3. These values should only be changed after

calling QP initialize.

inform is a scalar INTENT(OUT) argument of type QP inform type (see Section 2.3.5). A successful call to QP initialize

is indicated when the component status has the value 0. For other return values of status, see Section 2.5.

2.4.2 The quadratic programming subroutine

The quadratic programming solution algorithm is called as follows:

CALL QP solve(prob, data, control, inform, C stat, B stat)

prob is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.3.2). It is used to hold data about

the problem being solved. The user must allocate all the array components, and set values for all components.

The components prob%X and prob%Z must be set to initial estimates of the primal variables, x and dual

variables for the bound constraints, z, respectively. Inappropriate initial values will be altered, so the user

should not be overly concerned if suitable values are not apparent, and may be content with merely setting

prob%X=0.0 and prob%Z=0.0.

On exit, the components prob%X and prob%Z will contain the best estimates of the primal variables x, and dual

variables for the bound constraints z, respectively. Restrictions: prob%n > 0 and (if H is provided) prob%H%ne

≥−2. prob%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ }.

data is a scalar INTENT(INOUT) argument of type QP data type (see Section 2.3.6). It is used to hold data about the

problem being solved. It must not have been altered by the user since the last call to QP initialize.

control is a scalar INTENT(IN) argument of type QP control type (see Section 2.3.3). Default values may be

assigned by calling QP initialize prior to the first call to QP solve.

inform is a scalar INTENT(INOUT) argument of type QP inform type (see Section 2.3.5). A successful call to

QP solve is indicated when the component status has the value 0. For other return values of status, see

Section 2.5.

C stat is a rank-one INTENT(INOUT) array argument of dimension p%m and type default INTEGER, that indicates

which of the general linear constraints are in the current working set. Possible values for C stat(i), i= 1, . . . ,
p%m, and their meanings are

<0 the i-th general constraint is in the working set, on its lower bound,

>0 the i-th general constraint is in the working set, on its upper bound, and

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD QP (October 15, 2014) 9

QP GALAHAD

0 the i-th general constraint is not in the working set.

Suitable values must be supplied if control%qpa control%cold start = 0 on entry, but need not be provided

for other input values of control%cold start. Inappropriate values will be ignored. On exit, C stat will

contain values appropriate for the ultimate working set.

B stat is a rank-one INTENT(INOUT) array argument of dimension p%n and type default INTEGER, that indicates

which of the simple bound constraints are in the current working set. Possible values for B stat(j), j= 1, . . . ,
p%n, and their meanings are

<0 the j-th simple bound constraint is in the working set, on its lower bound,

>0 the j-th simple bound constraint is in the working set, on its upper bound, and

0 the j-th simple bound constraint is not in the working set.

Suitable values must be supplied if control%qpa control%cold start = 0 on entry, but need not be provided

for other input values of control%cold start. Inappropriate values will be ignored. On exit, B stat will

contain values appropriate for the ultimate working set.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL QP terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type QP data type exactly as for QP solve, which must not have been

altered by the user since the last call to QP initialize. On exit, array components will have been deallocated.

control is a scalar INTENT(IN) argument of type QP control type exactly as for QP solve.

inform is a scalar INTENT(OUT) argument of type QP inform type exactly as for QP solve. Only the component

status will be set on exit, and a successful call to QP terminate is indicated when this component status has

the value 0. For other return values of status, see Section 2.5.

2.5 Warning and error messages

A negative value of inform%status on exit from QP solve or QP terminate indicates that an error has occurred. No

further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0 or the requirement that prob%H type contain its relevant string ’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’ or ’DIAGONAL’ when H is available, has been violated.

-4. The bound constraints are inconsistent.

-7. The objective function appears to be unbounded from below on the feasible set.

-26. The requested quadratic programming solver is not available.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

10 QP (October 15, 2014) GALAHAD

GALAHAD QP

-61. An error has occurred when scaling the problem. See inform%SCALE inform%status and the documentation

for the package GALAHAD SCALE for further details.

-62. An error has occurred when pre-solving the problem. See inform%PRESOLVE inform%status and the docu-

mentation for the package GALAHAD PRESOLVE for further details.

-63. An error has occurred when solving the quadratic program using GALAHAD QPA. See inform%QPA inform%status

and the documentation for the package GALAHAD QPA for further details.

-64. An error has occurred when solving the quadratic program using GALAHAD QPB. See inform%QPB inform%status

and the documentation for the package GALAHAD QPB for further details.

-65. An error has occurred when solving the quadratic program using GALAHAD QPC. See inform%QPC inform%status

and the documentation for the package GALAHAD QPC for further details.

-66. An error has occurred when solving the quadratic program using GALAHAD CQP. See inform%CQP inform%status

and the documentation for the package GALAHAD CQP for further details.

-67. An error has occurred when solving the quadratic program using GALAHAD DQP. See inform%DQP inform%status

and the documentation for the package GALAHAD DQP for further details.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type QP control type (see Section 2.3.3), by reading an appropriate data specification file using the

subroutine QP read specfile. This facility is useful as it allows a user to change QP control parameters without

editing and recompiling programs that call QP.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by QP read specfile must start with a ”BEGIN QP” command and end

with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by QP_read_specfile ..)

BEGIN CQP

keyword value

.......

keyword value

END

(.. lines ignored by QP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN QP” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN QP SPECIFICATION

and

END QP SPECIFICATION

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD QP (October 15, 2014) 11

QP GALAHAD

are acceptable. Furthermore, between the “BEGIN QP” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when QP read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

QP read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL QP_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type QP control type (see Section 2.3.3). Default values should

have already been set, perhaps by calling QP initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.3) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

scale-problem %scale integer

infinity-value %infinity real

pre-solve-problem %presolve logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type default INTEGER, that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level > 0, a few lines of output indicating the progress of the scaling, pre-solve and solve

phases will be given. More detailed output for these phases may be obtained by setting the values control%package -

control%print level appropriately (see Section 2.3.5).

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

12 QP (October 15, 2014) GALAHAD

GALAHAD QP

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: QP solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS, GALA-

HAD SPACE, GALAHAD TOOLS, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT, GALAHAD QPD, GALAHAD SORT,

GALAHAD SCALE, GALAHAD PRESOLVE. GALAHAD MOP, GALAHAD QPA, GALAHAD QPB, GALAHAD QPC, GALAHAD CQP

and GALAHAD DQP.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n> 0, prob%m≥ 0, prob%A type and prob%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY -

ROWS’, ’DIAGONAL’ }. (if H and A are explicit).

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the primal optimality conditions

Ax = c (4.1)

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu, (4.2)

the dual optimality conditions

Hx+ g = AT y+ z, y = yl + yu and z = zl + zu, (4.3)

and

yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (4.4)

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0, (4.5)

where the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the dual

variables for the bounds, respectively, and where the vector inequalities hold componentwise.

See the documentation for the individual quadratic programming solvers for details of how they try to attain (4.1)–

(4.5).

5 EXAMPLE OF USE

Suppose we wish to minimize 1
2 x2

1+x2
2+x2x3+ 3

2 x2
3+2x2+1 subject to the the general linear constraints 1≤ 2x1+x2 ≤

2 and x2 + x3 = 2, and simple bounds −1 ≤ x1 ≤ 1 and x3 ≤ 2. Then, on writing the data for this problem as

H =





1

2 1

1 3



 , g =





0

2

0



 , xl =





−1

−∞

−∞



 , xu =





1

∞

2





All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD QP (October 15, 2014) 13

QP GALAHAD

and

A =

(

2 1

1 1

)

, cl =

(

1

2

)

, and cu =

(

2

2

)

in sparse co-ordinate format, we may use the GALAHAD quadratic programming solver QPA with both a pre-solve and

Sinkhorn-Knopp scaling using the following code:

! THIS VERSION: GALAHAD 2.4 - 10/01/2011 AT 07:30 GMT.

PROGRAM GALAHAD_QP_EXAMPLE

USE GALAHAD_QP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (QP_data_type) :: data

TYPE (QP_control_type) :: control

TYPE (QP_inform_type) :: inform

INTEGER :: s

INTEGER, PARAMETER :: n = 3, m = 2, h_ne = 4, a_ne = 4

INTEGER, ALLOCATABLE, DIMENSION(:) :: C_stat, B_stat

! start problem data

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))

ALLOCATE(p%C(m), p%C_l(m), p%C_u(m))

ALLOCATE(p%X(n), p%Y(m), p%Z(n))

ALLOCATE(B_stat(n), C_stat(m))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%m = m ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 0.0_wp, 2.0_wp, 0.0_wp /) ! objective gradient

p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound

p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound

p%X_l = (/ - 1.0_wp, - infinity, - infinity /) ! variable lower bound

p%X_u = (/ 1.0_wp, infinity, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ; p%Y = 0.0_wp ; p%Z = 0.0_wp ! start from zero

! sparse co-ordinate storage format

CALL SMT_put(p%H%type, ’COORDINATE’, s) ! Specify co-ordinate

CALL SMT_put(p%A%type, ’COORDINATE’, s) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%row(h_ne), p%H%col(h_ne))

ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))

p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%H%row = (/ 1, 2, 2, 3 /) ! NB lower triangle

p%H%col = (/ 1, 2, 1, 3 /) ; p%H%ne = h_ne

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%row = (/ 1, 1, 2, 2 /)

p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! problem data complete

CALL QP_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

control%quadratic_programming_solver = ’qpa’ ! use QPA

control%scale = 7 ! Sinkhorn-Knopp scaling

control%presolve = .TRUE. ! Pre-solve the problem

CALL QP_solve(p, data, control, inform, C_stat, B_stat) ! Solve

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ QP: ’, I0, ’ QPA iterations ’, /, &

& ’ Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%QPA_inform%iter, inform%obj, p%X

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

14 QP (October 15, 2014) GALAHAD

GALAHAD QP

ELSE ! Error returns

WRITE(6, "(’ QP_solve exit status = ’, I6) ") inform%status

END IF

CALL QP_terminate(data, control, inform) ! delete internal workspace

END PROGRAM GALAHAD_QP_EXAMPLE

This produces the following output:

QP: 5 QPA iterations

Optimal objective value = 5.4706E+00

Optimal solution = 5.8824E-02 8.8235E-01 1.1176E+00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(p%H%type, ’SPARSE_BY_ROWS’) ! Specify sparse-by-row

ALLOCATE(p%H%val(h_ne), p%H%col(h_ne), p%H%ptr(n + 1))

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%H%col = (/ 1, 2, 3, 3 /) ! NB lower triangular

p%H%ptr = (/ 1, 2, 3, 5 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(p%H%type, ’DENSE’) ! Specify dense

ALLOCATE(p%H%val(n * (n + 1) / 2))

p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 0.0_wp, 1.0_wp, 3.0_wp /) ! Hessian

! problem data complete

respectively.

If instead H had been the diagonal matrix

H =





1

2

3





but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp /) ! Hessian values

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD QP (October 15, 2014) 15

