@
&

&

Fok
S Y
2 E
£ 7
i 3

UNLAE

s

Science & Technology v ’} ECOLE

@ Facilities Council POLYTECHNIQUE
MONTREAL

GALAHAD SCALE

USER DOCUMENTATION GALAHAD Optimization Library version 5

&
3
2

1 SUMMARY

This package calculates and applsft and scale factorsfor the variables and constraints to try to equiilibrate the
guadratic programming problem

minimize ix"Hx +g"x+ f (1.1)
subject to the general linear constraints

d<a'x<d!, i=1,...,m, (1.2)
and the simple bound constraints

x'jnggx‘j’, i=1,...,n, (1.3)

where then by n symmetric matrixH, the vectorsy, a;, ¢, ¢¥, x!, x¥ and the scalaf are given. Full advantage is taken
of any zero coefficients in the matrix, as well as the matriA, whose rows are the vectaa$, i = 1,...,m. Any of
the constraint bounds, ¢, X; andx! may be infinite.

The derived type is also capable of supporfiagametric quadratic programming problems, in which an addi-
tional objective termBdg’ x + 65 is included, and the trajectory of solution are requiredai0 < 8 < Bmay for
which

d+05c <a'x<c'+03c, i=1,...,m

and
X +0x <x; <X+, j=1,...,n

New variablesXg!(x — xs) are calculated, involving the matrix of diagonal variabtalig factorsXs and a
corrsponding vector of shiftgs. Likelwise the constraint values are transformed ta0gé(Ax — cs), involving the
matrix of diagonal constraint scaling factd@g and vector of corrsponding shifts. The value of the objective
function is transformed to big; 1 (q(x) — fs) using an objective scaling factbg and shiftfs.

ATTRIBUTES — Versions: GALAHAD_SCALE si ngl e, GALAHAD_SCALE doubl e. Uses:GALAHAD_SYMBOLS, GALAHAD-
_SPACE, GALAHAD_SPECFI LE, GALAHAD_TOOLS, GALAHAD_SMI, GALAHAD_QPT, GALAHAD_TRANS. Date: January 2011.
Origin: N. . M. Gould, Rutherford Appleton Laboratoryanguage: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requiredSk statement such as

Single precision version
USE GALAHAD_SCALE_si ngl e

Double precision version
USE GALAHAD_SCALE doubl e

Ifitis required to use both modules at the same time, thevdeétypesSMI_t ype, QPT_pr obl em.t ype, SCALE_t r ans_t ype,
SCALE_cont rol _t ype, SCALE_i nf or m.t ype andSCALE_dat a-t ype (Section 2.2) and the subroutir®ALE_i ni ti al i ze,
SCALE_get , SCALE_appl y, SCALE r ecover, SCALE_t er m nat e, (Section 2.3) an8CALE _r ead_specfi | e (Section 2.5)
must be renamed on one of thgE statements.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SCALE (May 8,2013) 1

SCALE GALAHAD

2.1 Matrix storage formats

Both the Hessian matrild and the constraint Jacobidnmay be stored in a variety of input formats.

2.1.1 Dense storage format

The matrixA is stored as a compact dense matrix by rows, that is, the valhe entries of each row in turn are
stored in order within an appropriate real one-dimensianaly. Componernix (i — 1) + j of the storage arrafval

will hold the valuea;j fori=1,...,m, j=1,...,n. SinceH is symmetric, only the lower triangular part (that is the
parthij for 1 < j <i < n) need be held. In this case the lower triangle will be storgddws, that is component
i+ (i—1)/2+ j of the storage arralyfval will hold the valueh;; (and, by symmetnyh;) for 1 < j <i <n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. Fot-theentry of A, its row indexi, column indexj and
valuea;j are stored in thé-th components of the integer arrad® ow, A% ol and real arrapdval , respectively. The
order is unimportant, but the total number of entéége is also required. The same scheme is applicabl¢ (thus
requiring integer arrayd% ow, H¥¢ol , a real arrajHval and an integer valu¥/me), except that only the entries in
the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time #reyordered so that those in rowppear directly before
those in rowi + 1. For thei-th row of A, thei-th component of a integer arrd¥fpt r holds the position of the first
entry in this row, whileA%t r (m+ 1) holds the total number of entries plus one. The column irgiand values;
of the entries in thé-th row are stored in componerits- A%t r (i), ... A%tr (i+ 1) — 1 of the integer array%¢ol ,
and real array9al , respectively. The same scheme is applicabld {thus requiring integer array&pt r, Heol ,
and a real arrayval), except that only the entries in the lower triangle neectbied.

For sparse matrices, this scheme almost always requiesti@sge than its predecessor.
2.1.4 Diagonal storage format
If H is diagonal (i.e.hjj = 0 for all 1 <i # j < n) only the diagonals entrids;, 1 <i < n, need be stored, and the first
n components of the arrayval may be used for the purpose. There is no sensible equivalethtd non-squarA.
2.2 The derived data types

Six derived data types are accessible from the package.

2.2.1 The derived data type for holding matrices

The derived data typ8MI_TYPE is used to hold the matricésandH. The components @MI_TYPE used here are:

m is a scalar component of type defaulTEGER, that holds the number of rows in the matrix.
n is a scalar component of type defaulTEGER, that holds the number of columns in the matrix.
ne is ascalar variable of type defallNTEGER, that holds the number of matrix entries.

type is a rank-one allocatable array of type defaiHARACTER, that is used to indicate the matrix storage scheme
used. Its precise length and content depends on the typetokitebe stored (see §2.2.2).

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

2 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

val

row

col

ptr

is a rank-one allocatable array of type defaH&L (double precision irftALAHAD_SCALE_doubl e) and dimen-
sion at leashe, that holds the values of the entries. Each pair of off-di@j@ntrieshjj = hj; of a symmetric
matrix H is represented as a single entry (see §2.1.1-2.1.3). Anljcdtgal entries that appear in the sparse
co-ordinate or row-wise schemes will be summed.

is a rank-one allocatable array of type defalWTEGER, and dimension at leasg, that may hold the row indices
of the entries. (see §2.1.2).

is a rank-one allocatable array of type defANTECGER, and dimension at leasg, that may the column indices
of the entries (see §2.1.2-2.1.3).

is a rank-one allocatable array of type defANTEGER, and dimension at least + 1, that may hold the pointers
to the first entry in each row (see §2.1.3).

2.2.2 The derived data type for holding the problem

The derived data typ@T_pr obl emt ype is used to hold the problem. The componentQf_pr obl emt ype are:

n

m

is a scalar variable of type defalNTEGER, that holds the number of optimization variables,
is a scalar variable of type defalNTECER, that holds the number of general linear constraimts,

is scalar variable of typ8MI_TYPE that holds the Hessian matrix. The following components are used:

HY/ ype is an allocatable array of rank one and type def@HRRACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section®uséjl, the first five componentstdfi ype
must contain the strinBENSE. For the sparse co-ordinate scheme (see Section 2.1.Z)tghten com-
ponents ofH% ype must contain the strin@OORDI NATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen componentsidfype must contain the strin§PARSE_BY_ROWS, and for
the diagonal storage scheme (see Section 2.1.4), the fifst @mponents of% ype must contain the
string Dl AGONAL.

For convenience, the proced @l _put may be used to allocate sufficient space and insert the ezjuir
keyword intoH% ype. For example, ipr ob is of derived typeSCALE_pr obl emt ype and involves a Hes-
sian we wish to store using the co-ordinate scheme, we mgyh\sim

CALL SMT_put(prob%¥4ype, ' COORDI NATE)

See the documentation for tiBALAHAD packageSMT for further details on the use 8MI _put .

H/e is a scalar variable of type defallNTEGER, that holds the number of entries in tlesver triangular part
of H in the sparse co-ordinate storage scheme (see Section. dtlheed not be set for any of the other
three schemes.

Hival is a rank-one allocatable array of type def&iHfL (double precision iftALAHAD_SCALE doubl €), that
holds the values of the entries of tlwsver triangular part of the Hessian matriAd in any of the storage
schemes discussed in Section 2.1.

H% ow is a rank-one allocatable array of type defalWTEGER, that holds the row indices of thewer triangu-
lar part ofH in the sparse co-ordinate storage scheme (see Sectioi 2t h@ed not be allocated for any
of the other three schemes.

H¥ol is a rank-one allocatable array variable of type defaNREGER, that holds the column indices of the
lower triangular part ofH in either the sparse co-ordinate (see Section 2.1.2), @phese row-wise (see
Section 2.1.3) storage scheme. It need not be allocated thleethense or diagonal storage schemes are
used.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SCALE (May 8,2013) 3

SCALE GALAHAD

df

Cl

H/pt r is a rank-one allocatable array of dimensioeil and type default NTEGER, that holds the starting posi-
tion of each row of théower triangular part ofH, as well as the total number of entries plus one, in the
sparse row-wise storage scheme (see Section 2.1.3). Itmeédx allocated when the other schemes are
used.

is a rank-one allocatable array of dimensioand type defaulREAL (double precision irfGALAHAD_SCALE -
doubl e), that holds the gradiemtof the linear term of the quadratic objective function. Tjhé component of
G j=1,...,n, containgy;.

is a rank-one allocatable array of dimensioand type defaulREAL (double precision irfGALAHAD_SCALE -
doubl e), that may hold the gradie®g of the parametric linear term of the quadratic objectivection. The
j-th component obG, j = 1,...,n, containdg;.

is a scalar variable of type defalEAL (double precision ifsALAHAD_SCALE doubl e), that holds the constant
term, f, in the objective function.

is a scalar variable of type defaBAL (double precision ittALAHAD_SCALE doubl e), that holds the parametric
constant termdf, in the objective function.

is scalar variable of typ8MI_TYPE that holds the Jacobian matix The following components are used:

A% ype is an allocatable array of rank one and type def@HRRACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section2uséy, the first five componentsAsh ype
must contain the strinBENSE. For the sparse co-ordinate scheme (see Section 2.1.3iysthten compo-
nents ofA% ype must contain the strinGOORDI NATE, while for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen componenta%fype must contain the strin§PARSE_BY_RO\S.

Just as foH% ype above, the proceduSMI_put may be used to allocate sufficient space and insert the
required keyword intd% ype. Once again, ifr ob is of derived typeSCALE pr obl emt ype and involves
a Jacobian we wish to store using the sparse row-wise stecdggne, we may simply

CALL SMI_put(prob%\% ype, ' SPARSE BY ROAS)

A%ne is a scalar variable of type defalUNTEGER, that holds the number of entriesAnin the sparse co-ordinate
storage scheme (see Section 2.1.2). It need not be setHer eitthe other two schemes.

AWval is a rank-one allocatable array of type def&HAL (double precision itGALAHAD_SCALE doubl e), that
holds the values of the entries of the Jacobian ma&trir any of the storage schemes discussed in Sec-
tion 2.1.

A% ow is a rank-one allocatable array of type defAlNTECER, that holds the row indices & in the sparse co-
ordinate storage scheme (see Section 2.1.2). It need ndlbbatad for either of the other two schemes.

A%ol is arank-one allocatable array variable of type defaNREGER, that holds the column indices #éf in
either the sparse co-ordinate (see Section 2.1.2), or Hreespow-wise (see Section 2.1.3) storage scheme.
It need not be allocated when the dense storage scheme is used

AW%ptr is a rank-one allocatable array of dimensiorl and type default NTEGER, that holds the starting po-
sition of each row ofA, as well as the total number of entries plus one, in the spargevise storage
scheme (see Section 2.1.3). It need not be allocated wherttteeschemes are used.

is a rank-one allocatable array of dimensiomand type defaulREAL (double precision ifGALAHAD_SCALE-
_doubl e), that holds the vector of lower boundson the general constraints. Th¢h component ofC.l ,
i=1....m, contamg:' Infinite bounds are allowed by setting the correspondimguaanents o€ | to any value
smaIIer tham nfinity, wherei nfinity isacomponent of the control arragnt rol (see Section 2.2.4).

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

4 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

C.u is a rank-one allocatable array of dimensimand type defaulREAL (double precision irGALAHAD_SCALE-
_doubl e), that holds the vector of upper boundson the general constraints. Tith component ofC_u,
i=1,...,m, containsg'. Infinite bounds are allowed by setting the correspondingmanents oC_u to any
value larger thannf i ni ty, wherei nfinity is a component of the control arragnt rol (see Section 2.2.4).

DC.| is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_SCALE -
doubl e), that may hold the vector of parametric lower bouddson the general constraints. Tith component
of DCIl,i=1,...,m, containsﬁc}. Only components corresponding to finite lower bouc|dsneed be set.

DC_u is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_SCALE -
doubl e), that may hold the vector of parametric upper bouddson the general constraints. Th¢h com-
ponent ofbC_u, i = 1,...,m, containsdc{'. Only components corresponding to finite upper boufdseed be
set.

X is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_SCALE -
doubl e), that holds the vector of lower bounglson the the variables. Thieth componentoX.l, j=1,....n,
containsx'j. Infinite bounds are allowed by setting the correspondingpmanents oX | to any value smaller
than-infinity, wherei nfinity isacomponent of the control arragntrol (see Section 2.2.4).

X is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_SCALE._-
doubl e), that holds the vector of upper bounxdson the variables. Th¢-th component oKu, j=1,...,n,
containsx'. Infinite bounds are allowed by setting the correspondingmmnents ofX_u to any value larger
than that nfini ty, wherei nfinity is a component of the control arragnt r ol (see Section 2.2.4).

DX_| is a rank-one allocatable array of dimensio@and type defaulREAL (double precision irGALAHAD_SCALE -
doubl e), that may hold the vector of parametric lower bouddson the variables. Th¢-th component of
DXI,j=1,...,n, containsﬁx'j. Only components corresponding to finite lower boundjdseed be set.

DX_u is a rank-one allocatable array of dimensio@and type defaulREAL (double precision irGALAHAD_SCALE -
doubl e), that may hold the vector of parametric upper boudxison the variables. Th¢-th component of
DXwu, j=1,...,n, containsﬁx‘j’. Only components corresponding to finite upper bouq‘dxeed be set.

X is a rank-one allocatable array of dimensioand type defaulREAL (double precision irfGALAHAD_SCALE._-
doubl e), that holds the values of the optimization variables. Thigth component o, j =1,...,n, contains
Xj-

C is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_SCALE -
doubl e), that holds the valuesx of the constraints. Thieth componento€,i=1,...,m, containsa’ x = (Ax);.

Y is a rank-one allocatable array of dimensioand type defaulREAL (double precision irGALAHAD_SCALE -
doubl e), that holds the valueg of estimates of the Lagrange multipliers correspondindghéogeneral linear
constraints (see Section 4). Thth component of, i = 1,...,m, containsy;.

z is a rank-one allocatable array of dimensioand type defaulREAL (double precision irfGALAHAD_SCALE._-
doubl e), that holds the valuesof estimates of the dual variables corresponding to thelsiimpund constraints
(see Section 4). Thipth componentof, j =1,...,n, containg;.

2.2.3 The derived data type for holding the scaling factorsiad shifts

The derived data typ8CALE t r ans_t ype is used to hold the computed scaling factors and shifts. dhgonents of
SCALE_trans_t ype are:

X_scal e is arank-one allocatable array of dimensioand type defaulREAL (double precision ifALAHAD_SCALE -
doubl e), that holds the variable scale factors. Tjh#la component oK_scal e, j = 1,...,n, contains the scale
factor to be applied t;.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SCALE (May 8,2013) 5

SCALE GALAHAD

X_shift is arank-one allocatable array of dimensioand type defaulREAL (double precision ifcALAHAD_SCALE -
doubl e), that holds the variable shifts if appropriate. Tjath component oK shift, j =1,...,n, contains the
shift to be applied t«;.

Cscal e is arank-one allocatable array of dimensioand type defaulREAL (double precision ifcALAHAD_SCALE -
doubl e), that holds the constraint scale factors. Tile component o€ scal e, i =1,...,m, contains the scale
factor to be applied to thieth constraint.

Csshift is arank-one allocatable array of dimensioand type defaulREAL (double precision iGALAHAD_SCAL E-
_doubl e), that holds the constraint shifts if appropriate. THe component o€ shift,i =1,...,m, contains
the shift to be applied to thieth constraint.

f _scal e is a scalar variable of type defat’dEAL (double precision irftALAHAD_SCALE doubl e), that holds the scale
factor for the objective function.

f shift is a scalar variable of type defal’dEAL (double precision ifzALAHAD_SCALE doubl e), that holds the shift
for the objective function.

2.2.4 The derived data type for holding control parameters

The derived data typ&CALE cont r ol _t ype is used to hold controlling data. Default values may be oletéby calling
SCALE.initialize (see Section 2.3.1), while components may also be changedlliyg SCALE_r ead_specfile
(see Section 2.5.1). The componentSGALE cont rol _t ype are:

error is ascalar variable of type defallNTECGER, that holds the stream number for error messages. Printiegar
messages iSCALE get , SCALE appl y, SCALE r ecover andSCALE t er mi nat e is suppressed drror <0. The
defaultiserror = 6.

out is a scalar variable of type defallNTEGER, that holds the stream number for informational messagastirig)
of informational messages BCALE get , SCALE appl y, SCALE recover andSCALE t er ni nat e is suppressed
if out < 0. The defaultiut = 6.

print _l evel isa scalar variable of type defallNTEGER, that is used to control the amount of informational output
which is required. No informational output will occurgfint _| evel <O0. If print_level =1, asingle line
of output will be produced for each iteration of the procd&grint _| evel > 2, this output will be increased
to provide significant detail of each iteration. The deféaftri nt _| evel = 0.

maxit is a scalar variable of type defallNTEGER, that holds the maximum number of scaling iterations whidh w
be allowed inSCALE get . The defaultigraxit = 100.

shift x is a scalar variable of type defaliNTECER, that should be set be larger than 0 if shifts should be aghjpdie
the variablex. No shifts will be applied ithi ft x < 0. The defaultishift x = 0.

scal ex is a scalar variable of type defallNTEGER, that should be set be larger than 0 if scaling should be egpli
to the variablex. No scaling will be applied ifcal e_x < 0. The defaultiscal e_x = 0.

shift _c is a scalar variable of type defalliTEGER, that should be set be larger than 0 if shifts should be aghjpdie
the general constraints. No shifts will be appliedlif ft .c < 0. The defaultishift ¢ = 0.

scal e_c is a scalar variable of type defallNTEGER, that should be set be larger than 0 if scaling should be egpli
to the general constraints No scaling will be appliestiél e_.c < 0. The defaultiscal e_.c = 0.

shift _f is a scalar variable of type defaliNTECER, that should be set be larger than 0 if shifts should be aghjpdie
the objective function. No shifts will be appliedshi ft -f <0. The defaultishift_f = 0.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

6 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

scal e_f is a scalar variable of type defallNTEGER, that should be set be larger than 0 if scaling should be egpli
to the onjective function. No scaling will be appliecsifal e_f < 0. The defaultiscal e_f = 0.

infinity is a scalar variable of type defalREAL (double precision irGALAHAD_SCALE_doubl e), that is used to
specify which constraint bounds are infinite. Any bounddairgpani nfi ni ty in modulus will be regarded as
infinite. The defaultisnfinity =10,

stop_tol is a scalar variable of type defalEAL (double precision itGALAHAD_SCALE doubl e), that is specifes the
stopping tolerance using for the scaling iteration if regdi

scal ex_nin is a scalar variable of type defalREAL (double precision irGALAHAD_SCALE doubl e), that is used
to specify the minimum permitted variable scale factor. Tefault isscal e x_mn = 1, and any specified
non-positive value ofcal e_x_m n will be interpreted as the default.

scal e_.c_nin is a scalar variable of type defalREAL (double precision irGALAHAD_SCALE doubl e), that is used
to specify the minimum permitted constraint scale factdne Tefault isscal e_.c_nin = 1, and any specified
non-positive value ofcal e_c_m n will be interpreted as the default.

spacecritical is a scalar variable of type defawl©od CAL, that must be setTRUE. if space is critical when
allocating arrays andFALSE. otherwise. The package may run fastesgéce_critical is. FALSE. butatthe
possible expense of a larger storage requirement. Theltlisfapace _critical = . FALSE. .

deal | ocate_error fatal isa scalarvariable of type defauldd CAL, that must be setTRUE. if the user wishes to
terminate execution if a deallocation fails, arfeALSE. if an attempt to continue will be made. The default is
deal | ocate_error fatal = .FALSE..

prefix is a scalar variable of type defalARACTER and length 30, that may be used to provide a user-selected
character string to preface every line of printed outpuecHirally, each line of output will be prefaced by the
stringpr ef i x(2: LEN(TRI M prefi x))-1), thus ignoring the first and last non-null components of tigptied
string. If the user does not want to preface lines by suchirgstthey may use the defagltefix = ""

2.2.5 The derived data type for holding informational parameters

The derived data typ8CALE_i nf or mt ype is used to hold parameters that give information about togness and
needs of the algorithm. The componentSGALE.i nf or m.t ype are:

status is a scalar variable of type defalllNTEGER, that gives the exit status of the algorithm. See Sectiorfd.4
details.

al l oc_stat us is a scalar variable of type defalNTECGER, that gives the status of the last attempted array allogatio
or deallocation. This willbe O it atus = 0.

bad_al | oc is a scalar variable of type defa@HARACTER and length 80, that gives the name of the last internal array
for which there were allocation or deallocation errors.shill be the null string ifst at us = 0.

devi atd arscalar variable of type defatfEAL (double precision irftALAHAD_SCALE_doubl e), that holds the value of
the deviation from double-stocasticity when appropriate.
2.2.6 The derived data type for holding problem data

The derived data typ8CALE dat a_t ype is used to hold all the data for a particular problem, or saqas of problems
with the same structure, between callS6ALE procedures. This data should be preserved, untouchedilieimitial
call toSCALE i ni ti al i ze to the final call taSCALE_t er ni nat e.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SCALE (May 8, 2013) 7

SCALE GALAHAD

2.3 Argument lists and calling sequences

There are five procedures for user calls (see Section 2.5ifthrefr features):

1. The subroutin€CALE.i ni ti al i ze is used to set default values, and initialize private dag¢éote solving one
or more problems with the same sparsity and bound structure.

2. The subroutin€CALE _get is called to compute the scaling factors.
3. The subroutin€CALE_appl y is called to apply the scaling factors to the data of a QP bl

4. The subroutin®CALE_r ecover is called to undo the effects of the scaling factors previoapplied to a QP
problem.

5. The subroutin€CALE_t er mi nat e is provided to allow the user to automatically deallocatayacomponents
of the private data, allocated I3ZALE get , at the end of the solution process.

2.3.1 The initialization subroutine

Default values are provided as follows:
CALL SCALE.initialize(data, control, inform)

dat a is a scalaft NTENT(| NOUT) argument of typ&CALE dat a_t ype (see Section 2.2.6). It is used to hold data about
the problem being scaled.

control is a scalad NTENT(QUT) argument of typeSCALE control _t ype (see Section 2.2.4). On exitpnt r ol
contains default values for the components as describeédtidd 2.2.4. These values should only be changed
after callingSCALE.i ni ti al i ze.

i nform is a scalad NTENT(QUT) argument of typeSCALE_i nf or mt ype (see Section 2.2.5). A successful call to
SCALE.i niti al i ze is indicated when the componentat us has the value 0. For other return valuesiodt us,
see Section 2.4.

2.3.2 The subroutine that computes the scaling factors

The scaling factors and shifts are calculated as follows:
CALL SCALE get(prob, scale, trans, data, control, inform)

prob is a scalat NTENT(IN) argument of type&PT_pr obl emt ype (see Section 2.2.2). It is used to hold data about
the problem being scaled. The user must allocate all they @weponents for the non-parametric problem
(1.1)—(2.3), and set values for these components.

The componentgr ob%X, pr ob%C, pr ob%’ andpr ob% should be set to “typical” estimates of the primal
variablesx, general constraint valués<, Lagrange multipliers for the general constraigtand dual variables
for the bound constraintg, respectivelyRestrictions: pr ob% > 0, pr ob%m > O, pr ob%A_t ype € {' DENSE',

" COORDI NATE', " SPARSE_BY_.ROAS' }, andpr ob%-type € {" DENSE , ' COORDI NATE', ' SPARSE_BY_ROAS',
' DI AGONAL' 1.

scal e is a scalaf NTENT(1 N) argument of type defaultNTEGER, that is used to control problem scaling. Possible
values and their consequences are:
< 0 or> 7. No scaling will be performed

1. Scaling and shifts will be calculated to try to map all valésand constraints to have values between 0 and
1.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

8 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

2. The symmetric Curtis-Reid method will be applied to compmaalings to normalize the rows of the matrix

H AT
K(A O).

The unsymmetric Curtis-Reid method will be applied to ndiregthe rows and columns éf.
Scaling will be applied to equilibrate the norms of the roW#\o

Strategy 2 will be followed by strategy 4.

Strategy 3 will be followed by strategy 4.

N o g bk~ ow

Scaling will be applied to equilibrate the rows and columhK aising the Sinkhorn-Knopp strategy.

trans is a scalal NTENT(| NOUT) argument of typ&CALE dat a_t ype (see Section 2.2.3) whose components will be
filled as appropriate on output with the scaling factors arifissfor the requested scaling strategy.

dat a is a scalaf NTENT(| NOUT) argument of typ&CALE dat a_t ype (see Section 2.2.6). Itis used to hold data about
the problem being solved. It must not have been altbyetthe usersince the last call tSCALE.i ni ti al i ze.

control isascalat NTENT(IN) argument of typ&CALE control _t ype (see Section 2.2.4). Default values may be
assigned by callin§CALE.i ni ti al i ze prior to the first call tdSCALE get .

i nform is a scalat NTENT(| NOUT) argument of typeSCALE i nf or mt ype (see Section 2.2.5). A successful call to
SCALE_get is indicated when the componesitat us has the value 0. For other return valuesbét us, see
Section 2.4,

2.3.3 The subroutine that applies the scaling factors and sfts

The scaling factors and shifts are applied to the quadratigramming problem data as follows:
CALL SCALE_apply(prob, trans, data, control, inform)

The argumentsgr ob, trans, data, control andinformare as described f@CALE_get except thapr ob is now
I NTENT(| NOUT) whiletrans is| NTENT(I N). On exit, the scalings and shifts recordedimns will be applied to the
guadratic programming data inputpnob; the transformed problem data will be outpupirob. The transformation
will only be applied to the parametric componedits &f, 8¢, dcY, dx' anddx! of the problem whemr ob%G is
allocated.

A successful call t&CALE appl y is indicated when the compondntf or n¥st at us has the value 0. For other
return values of nf or n¥st at us, see Section 2.4.

2.3.4 The subroutine that “undoes” the scaling factors andifts

The effects of the scaling factors and shifts on the quadpsatigramming problem data are “undone” as follows:
CALL SCALE.recover(prob, trans, data, control, inform)

The argumentgpr ob, trans, dat a, control andi nf or mare exactly as described f6EALE_appl y except that now
on exit, the inverses of the scalings and shifts recorded ans will be applied to the quadratic programming data
input in pr ob; the unscaled problem data will be outputpinob. The reverse transformation will only be applied to
the parametric componeridg, df, 8¢, 3¢V, &x' anddx! of the problem whepr ob%DG is allocated.

A successful call t&CALE r ecover is indicated when the componentf or n¥st at us has the value 0. For other
return values of nf or 96t at us, see Section 2.4.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SCALE (May 8,2013) 9

SCALE GALAHAD

2.3.5 The termination subroutine

All previously allocated arrays are deallocated as follows
CALL SCALE terninate(data, control, inform)

dat a is a scalat NTENT(| NOUT) argument of typ&CALE dat a_t ype exactly as foiSCALE_get , which must not have
been alteredby the usersince the last call t&CALE i niti al i ze. On exit, array components will have been
deallocated.

control isascalat NTENT(IN) argument of typ&CALE cont r ol _t ype exactly as foISCALE get .

i nform is a scalat NTENT(OUT) argument of typ&SCALE_i nf or mt ype exactly as foISCALE get . Only the compo-
nentst at us will be set on exit, and a successful call36ALE_t er mi nat e is indicated when this component
st at us has the value 0. For other return valuestdt us, see Section 2.4.

2.4 Warning and error messages

A negative value of nf or n¥st at us on exit fromSCALE get , SCALE appl y, SCALE_recover or SCALE_t erni nate
indicates that an error has occurred. No further calls shioeimade until the error has been corrected. Possible values
are:

-1. Anallocation error occurred. A message indicating theraffeg array is written on undont r ol %er r or, and the
returned allocation status and a string containing the nainttee offending array are held imf or n#al | oc_-
stat us andi nf or n#bad_al | oc respectively.

-2. A deallocation error occurred. A message indicating theraffng array is written on undont r ol %rror and
the returned allocation status and a string containingaeaof the offending array are heldinf or n%al | oc _-
stat us andi nf or n¥bad_al | oc respectively.

- 3. One of the restrictiongr ob% > O, prob%n > 0, or the requirements that 0b%A_t ype contains its relevant
string’ DENSE' , ' COORDI NATE' or ' SPARSE_BY_RONS' andpr ob%.t ype contain its relevant stringDENSE' ,
" COORDI NATE' , ' SPARSE_BY_ROAS' or' DI AGONAL’ has been violated.

A positive value of nf or n¥st at us is a warning. Possible values are:

18. Too many scaling iterations have been performed. This mpgédmaifcont r ol %raxi t is too small.

2.5 Further features

In this section, we describe an alternative means of settimgrol parameters, that is components of the variable
control of type SCALE control _type (see Section 2.2.4), by reading an appropriate data spswficfile using
the subroutiné€SCALE_r ead_specfi | e. This facility is useful as it allows a user to char§@\LE control parameters
without editing and recompiling programs that 20ALE.

A specification file, or specfile, is a data file containing a bemof "specification commands”. Each command
occurs on a separate line, and comprises a "keyword”, whialstring (in a close-to-natural language) used to identify
a control parameter, and an (optional) "value”, which defitiee value to be assigned to the given control parameter.
All keywords and values are case insensitive, keywords neggrbceded by one or more blanks but values must not
contain blanks, and each value must be separated from igkdyy at least one blank. Values must not contain more
than 30 characters, and each line of the specfile is limite8Dtoharacters, including the blanks separating keyword
and value.

The portion of the specification file used BgALE r ead_specfi | e must start with aBEG N SCALE” command
and end with anEND" command. The syntax of the specfile is thus defined as follows

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

10 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

(.. lines ignored by QP_read_specfile ..)
BEG N CQP
keywor d val ue
keywor d val ue
END
(.. lines ignored by QP_read_specfile ..)

where keyword and value are two strings separated by (&) leas blank. The BEG N SCALE” and “END’ delimiter
command lines may contain additional (trailing) stringdam as such strings are separated by one or more blanks,
so that lines such as

BEG N QP SPECI FI CATI ON
and
END QP SPECI FI CATI ON

are acceptable. Furthermore, between BEG'N SCALE” and “END’ delimiters, specification commands may occur
in any order. Blank lines and lines whose first non-blank abtar is! or* are ignored. The content of a line after a
or* character is also ignored (as is ther * character itself). This provides an easy manner to "comrmetitsome
specification commands, or to comment specific values odicecbntrol parameters.

The value of a control parameters may be of three differgrgsynamely integer, logical or real. Integer and real
values may be expressed in any relevant Fortran integer@atihfl-point formats (respectively). Permitted valueas fo
logical parameters ared’, " TRUE”, ”. TRUE. ", " T", " YES", " Y", or "OFF", "NO", " N’, " FALSE", ”. FALSE. " and "F".
Empty values are also allowed for logical control paranstand are interpreted asRUE”".

The specification file must be open for input whe@ALE r ead_specfi | e is called, and the associated device
number passed to the routine in device (see below). Notettbatorresponding file iBEW NDed, which makes it
possible to combine the specifications for more than onerprofjoutine. For the same reason, the file is not closed
by SCALE_r ead_specfil e.

2.5.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL SCALE read_specfile(control, device)

control is a scalad NTENT(| NOUT) argument of typeSCALE control _t ype (see Section 2.2.4). Default values
should have already been set, perhaps by calidf E i nitialize. On exit, individual components of
control may have been changed according to the commands found ipéeéils. Specfile commands and
the component (see Section 2.2.4 oft rol that each affects are given in Table 2.1.

devi ce is a scalat NTENT(| N) argument of type defaultNTEGER, that must be set to the unit number on which the
specfile has been opened.dHvi ce is not opengont rol will not be altered and execution will continue, but
an error message will be printed on ucdnt r ol %err or .

2.6 Information printed

If control %rint_I evel is positive, information about the progress of the alganitkill be printed on unitont r ol -
Y%ut . If control %rint_level >0, afew lines of output indicating the progress of the corapaoih of the scaling
factotrs and shifts may be given.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SCALE (May 8,2013) 11

SCALE GALAHAD
command component otontr ol value type
error-printout-device Y%error integer
printout-device Yout integer
print-1level Y%rint _| evel integer
maxi num nunber-of -iterations | %maxit integer
shift-x Ushift x integer
scal e-x Yscal e_x integer
shift-c Yshift _c integer
scale-c Yscal e_c integer
shift-f Yshift _f integer
scal e-f Yscal e_f integer
infinity-val ue %nfinity real
stop-tol erance Yst op_t ol real
smal | est-x-scaling Yscal e_x_mn real
smal | est-c-scaling Yscal e_x_min real
space-critical Yspace_critical logical
deal | ocate-error-fatal Yeal | ocate_error fatal | logical
out put-1ine-prefix Y%prefi x character

Table 2.1: Specfile commands and associated componetdatafol .

3 GENERAL INFORMATION

Use of common: None.
Workspace: Provided automatically by the module.
Other routines called directly: None.

Other modules used directly: SCALE get , SCALE appl y andSCALE_r ecover call theGALAHAD package&ALAHAD_SY-
MBOLS, GALAHAD_SPACE, GALAHAD_SPECFI LE, GALAHAD_TOCLS, GALAHAD_SMT, GALAHAD_QPT andGALAHAD_TRANS.

Input/output: Output is under control of the argumentsit r ol %error, cont r ol %out andcontrol %rint _| evel .

Restrictions: prob% > 0, pr ob%n> 0, pr ob%A_t ype andpr ob%-t ype € {" DENSE',’ COORDI NATE' , ' SPARSE_BY -
ROAS , ' DI AGONAL’ }.

Portability: 1SO Fortran 95 + TR 15581 or Fortran 2003. The package is dhsafe.

4 METHOD

The required solutior necessarily satisfies the primal optimality conditions

Ax=c (4.2)
and
d<ec<cY, x <x<xY, (4.2)
the dual optimality conditions
Hx +g=ATy+z y=y' +y' andz=7 +2", (4.3)
All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.
12 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

and
y' >0, y*<0, 7 >0 andz' <0, (4.4)

and the complementary slackness conditions
(Ax—c)Ty' =0, (Ax—c)Ty'=0, (x—x"TZ =0 and (x—x")T2" =0, (4.5)

where the vectory and z are known as the Lagrange multipliers for the general lirmenstraints, and the dual
variables for the bounds, respectively, and where the véotgualities hold componentwise.

The Curtis-Reid symmetric and unsymmetric matrix scalir@cpdures are described in
A. R. Curtis and J. K. Reid (1972). On the automatic scalingnafrices for Gaussian elimination. IMA J. Appl.
Math. 10(1)118-124.

The Sinkhorn-Knopp scaling strategy that aims to scale arsgtmic matrix so that it is doubly stochastic (i.e., its
rows and columns have unit norm) was proposed by
R. Sinkhorn and P. Knopp (1967). Concerning nonnegativeicestand doubly stochastic matrices. Pacific J. Math.
21(2)343-348.

The other strategies are “home grown”.

5 EXAMPLE OF USE

Suppose we are considering the quadratic progy#h- x3 + Xox3 + gx§ + 2x2 + 1 subject to the the general linear
constraints X 2x; + x2 < 2 andxz +x3 = 2, and simple bounds1 < x; < 1 andxz < 2. Then, on writing the data
for this problem as

1 0 -1 1
H= 2 1 |,9=(2|, x=| o |, x¥=] o
1 3 0 —00 2

and
(21 (1 u_ [2
A_< 11),C_<2),andc_(2>
in sparse co-ordinate format, we may transform the problsimguSinkhorn-Knopp scaling using the following code:

I TH'S VERSION: GALAHAD 2.4 - 17/01/2011 AT 15:30 GM.
PROGRAM GALAHAD_SCALE_EXAMPLE

USE GALAHAD SCALE doubl e I doubl e precision version
USE GALAHAD SMT_doubl e

I MPLICI' T NONE

| NTEGER, PARAMETER :: wp = KIND(1.0D+0) I set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20
(QPT_problemtype) :: p
(SCALE trans_type) :: trans
TYPE (SCALE data_type) :: data
(SCALE control _type) :: control
TYPE (SCALE_informtype) :: inform
INTEGER :: s, scale
INTEGER, PARAMETER :: n =3, m=2, hne =4, ane=4
I start problemdata
ALLOCATE(p%(n), p®<I(n), p®u(n))
ALLOCATE(p%(m), p¥CI(m), pA u(m))
ALLOCATE(p%(n), p®W/(m), p%(n))
p% =n; p¥%n=m; p% = 1.0_wp ! dimensions & obj constant

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SCALE (May 8,2013) 13

SCALE GALAHAD

p% = (/ 0.0_wp, 2.0_wp, 0.0 wp /) I objective gradient
p¥C | = (/ 1.0_wp, 2.0_wp /) I constraint |ower bound
p¥C u = (/ 2.0_wp, 2.0_wp /) I constraint upper bound
p_| = (/ - 1.0_wp, - infinity, - infinity /) ! variable |ower bound
p¥ u = (/ 1.0_wp, infinity, 2.0_wp /) I variabl e upper bound
p¥X = 0.0_wp ; p% = 0.0_wp ; p% = 0.0_wp I typical values for x, y &z
py%C = 0.0_wp 'c=A*Xx
| sparse co-ordinate storage format
CALL SMT_put (p%¥% ype, ' COORDI NATE' , s) I specify co-ordinate
CALL SMT_put(p%A\% ype, ' COORDI NATE', s) I storage for Hand A
ALLCCATE(p%Haval (h_ne), p%® owm h_ne), p%¥ecol(h_ne))
ALLCCATE(p%A%val (a_ne), p%\% owm a_ne), p%\%ol(a_ne))
p%Pval = (/ 1.0_wp, 2.0_wp, 1.0 wp, 3.0wp /) ! Hessian H
pdsow = (/ 1, 2, 2, 3 /) I NB lower triangle
pdPeol = (/ 1, 2, 1, 3 /) ; pY%Phe = h_ne
p¥Aval = (/ 2.0_wp, 1.0_wp, 1.0 wp, 1.0_wp /) ! Jacobian A
p¥A%ow = (/ 1, 1, 2, 2 /)
p¥A%ol = (/ 1, 2, 2, 3 /) ; p%\%e = a_ne
! problemdata conplete - conpute and apply scale factors
CALL SCALE initialize(data, control, inform) ! Initialize controls
control % nfinity = infinity I Set infinity
scale = 7 I Si nkhor n- Knopp scaling
CALL SCALE get(p, scale, trans, data, control, inform) ! Get scalings
IF (informdstatus == 0) THEN I Successful return
WRITE(6, "(' variable scalings : ', /, (5ES12.4))") trans% scal e
WRITE(6, "(' constraint scalings : ', /, (5ES12.4))") trans%C scale
ELSE I Error returns
WRITE(6, "(' SCALE get exit status ="', 16) ") inforn¥status
END | F
CALL SCALE apply(p, trans, data, control, inform)
IF (informdstatus == 0) THEN I Successful return
WRITE(6, "(' scaled A: ', [/, (5ES12.4))") pY%A%al
ELSE I Error returns
WRITE(6, "(' SCALE get exit status ="', 16) ") inforn¥status
END | F
CALL SCALE terminate(data, control, inform trans) ! delete workspace

END PROGRAM GALAHAD SCALE_EXAMPLE

This produces the following output:

variabl e scalings :
7.0711E-01 7.0711E-01 5.7735E-01
constraint scalings :
7.0711E-01 1.2968E+00
scaled A :
1. 0000E+00 5. 0000E-01 9.1700E-01 7.4873E-01

The same problem may be scaled holding the data in a sparseisastorage format by replacing the lines
| sparse co-ordinate storage format

i ‘ brobl em data conpl ete

by

| sparse roww se storage format
CALL SMT_put(p%¥ ype, 'SPARSE BY ROANS') ! Specify sparse-by-row

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

14 SCALE (May 8, 2013) GALAHAD

GALAHAD SCALE

ALLCCATE

(p%val (h_ne), p%¥eol (h_ne), p%Pptr(n+ 1))
ALLOCATE(p a

Y%\%al (a_ne), p%\%ol (a_ne), p¥A%tr(m+ 1))
2.0 wp, 1.0wp, 3.0wp /) ! Hessian H

p%-val (1 1.0_wp, A
p%Heol (r 1, 2, 3, 31/) I NB | ower triangular
pUptr = (/ 1, 2, 3, 51/) I Set row pointers

I problemdata conplete

or using a dense storage format with the replacement lines

I dense storage format
CALL SMI_put(p%¥4ype, 'DENSE) ! Specify dense
ALLOCATE(p%Pwval(n* (n+1)/ 2))

pdwval = (/ 1.0_wp, 0.0_wp, 2.0 wp, 0.0_wp, 1.0 wp, 3.0_wp /) ! Hessian
I problemdata conplete

respectively.
If insteadH had been the diagonal matrix

H= 2
3

but the other data is as before, the diagonal storage schéghé¢lme used foH, and in this case we would instead
CALL SMI_put(prob%ype, 'DIAGONAL') ! Specify dense storage for H

ALLOCATE(p%val (n))
pdval = (/ 1.0_wp, 2.0_wp, 3.0 wp /) ! Hessian val ues

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SCALE (May 8,2013) 15

