
GALAHAD RQS
USER DOCUMENTATION GALAHAD Optimization Library version 2.5

1 SUMMARY

Given realn by n symmetric matricesH andM (with M diagonally dominant), , another realm by n matrix A, a
real n vectorc and scalarsσ > 0, p > 2 and f , this package finds anapproximate minimizer of the regularised
quadratic objective function 1

2xT Hx + cT x+ f + 1
p σ‖x‖p

M , where the vector x may additionally be required to

satisfy Ax= 0, and where theM -norm ofx is ‖x‖M =
√

xT Mx . This problem commonly occurs as a subproblem in
nonlinear optimization calculations. The matrixM need not be provided in the commonly-occurringℓ2-regularisation
case for whichM = I , then by n identity matrix.

Factorization of matrices of the formH +λM—or

(

H +λM A T

A 0

)

(1.1)

in cases whereAx = 0 is imposed—for a succession of scalarsλ will be required, so this package is most suited for
the case where such a factorization may be found efficiently.If this is not the case, the packageGALAHAD GLRT may
be preferred.

ATTRIBUTES — Versions: GALAHAD RQS single, GALAHAD RQS double. Uses:GALAHAD CLOCK, GALAHAD SYM-
BOLS, GALAHAD SPACE, GALAHAD RAND, GALAHAD NORMS, GALAHAD ROOTS, GALAHAD SPECFILE, GALAHAD SLS, GALA-
HAD IR, GALAHAD MOP Date: November 2008.Origin: N. I. M. Gould, H. S. Thorne, Rutherford Appleton Laboratory,
and D. P. Robinson, Oxford University.Language: Fortran 95 + TR 15581 or Fortran 2003.Parallelism: Some
options may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

Access to the package requires aUSE statement such as

Single precision version

USE GALAHAD RQS single

Double precision version

USE GALAHAD RQS double

If it is required to use both modules at the same time, the derived typesSMT TYPE, RQS control type, RQS history -
type, RQS inform type, RQS data type, (Section 2.4) and the subroutinesRQS initialize, RQS solve, RQS -
terminate (Section 2.5) andRQS read specfile (Section 2.7) must be renamed on one of theUSE statements.

2.1 Matrix storage formats

The matricesH and (if required)M andA may be stored in a variety of input formats.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD RQS (November 24, 2011) 1

RQS GALAHAD

2.1.1 Dense storage format

The matrixH is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensionalarray. SinceH is symmetric, only the lower triangular part
(that is the parthi j for 1≤ j ≤ i ≤ n) need be held. In this case the lower triangle should be stored by rows, that is
componenti∗ (i−1)/2+ j of the storage arrayH%val will hold the valuehi j (and, by symmetry,h ji) for 1≤ j ≤ i ≤ n.
The same is true forM if it is used. IfA is used, the entire matrix must be supplied, and componentn ∗ (i−1)+ j of
the storage arrayA%val will hold the valueai j for i = 1, . . . ,m, j = 1, . . . ,n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For thel-th entry ofH, 1≤ j ≤ i ≤ n, its row indexi, column index
j and valuehi j are stored in thel-th components of the integer arraysH%row, H%col and real arrayH%val, respectively.
Note that only the entries in the lower triangle should be stored. The same scheme may be used forM if it is required.
If A is used, the entire matrix must be supplied using the same scheme in the integer arraysA%row, A%col and real
arrayA%val.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time theyare ordered so that those in rowi appear directly before
those in rowi+1. For thei-th row of H, thei-th component of the integer arrayA%ptr holds the position of the first
entry in this row, whileA%ptr (m+1) holds the total number of entries plus one. The column indices j, 1≤ j ≤ i,
and valueshi j of the entries in thei-th row are stored in componentsl = H%ptr(i), . . . ,H%ptr (i+1)−1 of the integer
arrayH%col, and real arrayH%val, respectively. Note that as before only the entries in the lower triangle should be
stored. For sparse matrices, this scheme almost always requires less storage than its predecessor. This scheme may
also be used forM andA if they are required, excepting that forA the whole matrix must be stored.

2.1.4 Diagonal storage format

If H is diagonal (i.e.,hi j = 0 for all 1≤ i 6= j ≤ n) only the diagonals entrieshii, 1≤ i ≤ n, need be stored, and the first
n components of the arrayH%val may be used for the purpose. The same applies toM if it is required. This scheme is
inappropriate and thus unavailable forA.

2.2 Integer kinds

We use the term longINTEGER to denoteINTEGER(kind=long), wherelong = selected int kind(18)).

2.3 OpenMP

OpenMP may be used by theGALAHAD RQS package to provide parallelism for some solver options in shared memory
environments. See the documentatiuon for theGALAHAD packageSLS for more details. To run in parallel, OpenMP
must be enabled at compilation time by using the correct compiler flag (usually some variant of-openmp). The number
of threads may be controlled at runtime by setting the environment variableOMP NUM THREADS.

The code may be compiled and run in serial mode.

2.4 The derived data types

Six derived data types are accessible from the package.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

2 RQS (November 24, 2011) GALAHAD

GALAHAD RQS

2.4.1 The derived data type for holding matrices

The derived data typeSMT TYPE is used to hold the matricesH and perhapsM and/orA. The components ofSMT TYPE
used here are:

m is a scalar component of type defaultINTEGER, that holds the number of rows in the matrix.

n is a scalar component of type defaultINTEGER, that holds the number of columns in the matrix.

ne is a scalar variable of type defaultINTEGER, that holds the number of matrix entries.

type is a rank-one allocatable array of type defaultCHARACTER, that is used to indicate the matrix storage scheme
used. Its precise length and content depends on the type of matrix to be stored.

val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD RQS double) and dimension
at leastne, that holds the values of the entries. Each pair of off-diagonal entrieshi j = h ji of the symmetric
matrix H is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse
co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type defaultINTEGER, and dimension at leastne, that may hold the row indices
of the entries. (see §2.1.2).

col is a rank-one allocatable array of type defaultINTEGER, and dimension at leastne, that may hold the column
indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type defaultINTEGER, and dimension at leastn + 1, that may holds the
pointers to the first entry in each row (see §2.1.3).

2.4.2 The derived data type for holding control parameters

The derived data typeRQS control type is used to hold controlling data. Default values may be obtained by calling
RQS initialize (see Section 2.5.1). The components ofRQS control type are:

error is a scalar variable of type defaultINTEGER, that holds the stream number for error messages. Printing of error
messages inRQS solve andRQS terminate is suppressed iferror≤ 0. The default iserror = 6.

out is a scalar variable of type defaultINTEGER, that holds the stream number for informational messages. Printing
of informational messages inRQS solve is suppressed ifout< 0. The default isout = 6.

print level is a scalar variable of type defaultINTEGER, that is used to control the amount of informational output
which is required. No informational output will occur ifprint level≤ 0. If print level = 1 a single line
of output will be produced for each iteration of the process.If print level ≥ 2 this output will be increased
to provide significant detail of each iteration. The defaultis print level = 0.

dense factorization is a scalar variable of type defaultINTEGER, that is used to indicate whether the problem
should be treated as dense and solved using dense-factorization methods. Possible values are:

0 the problem should be considered as sparse.

1 the problem should be considered as dense.

other the algorithm will decide whether to treat the problem as dense or sparse depending on its dimension
and the sparsity of the matrices involved.

The default isdense factorization = 0.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD RQS (November 24, 2011) 3

RQS GALAHAD

new h is a scalar variable of type defaultINTEGER, that is used to indicate howH has changed (if at all) since the
previous call toRQS solve. Possible values are:

0 H is unchanged.

1 the values inH have changed, but its nonzero structure is as before.

2 both the values and structure ofH have changed.

The default isnew h = 2.

new m is a scalar variable of type defaultINTEGER, that is used to indicate howM (if required) has changed (if at all)
since the previous call toRQS solve. Possible values are:

0 M is unchanged.

1 the values inM have changed, but its nonzero structure is as before.

2 both the values and structure ofM have changed.

The default isnew m = 2.

new a is a scalar variable of type defaultINTEGER, that is used to indicate howA (if required) has changed (if at all)
since the previous call toRQS solve. Possible values are:

0 A is unchanged.

1 the values inA have changed, but its nonzero structure is as before.

2 both the values and structure ofA have changed.

The default isnew a = 2.

max factorizations is a scalar variable of type defaultINTEGER, that holds the maximum number of factorizations
which will be permitted. Ifmax factorizations is set to a negative number, there will be no limit on the
number of factorizations allowed. The default ismax factorizations = -1.

inverse itmax is a scalar variable of type defaultINTEGER, that holds the maximum number of inverse iterations
which will be allowed per step when estimating the leftmost eigenvalue inRQS solve. If inverse itmax is set
to a non-positive number, it will be reset byRQS solve to 2. The default isinverse itmax = 2.

taylor max degree is a scalar variable of type defaultINTEGER, that specifies the maximum degree of Taylor approx-
imant that will be used to approximate the secular function when trying to improveλ; a first-degree approximant
results in Newton’s method. The higher the degree, the better in general the improvement, but the larger the cost.
Thus there is a balance between many cheap low-degree approximants and a few more expensive higher-degree
ones. Our experience favours higher-degree approximants.The default istaylor max degree = 3, which is
the highest degree currently supported.

initial multiplier is a scalar variables of typeREAL (double precision inGALAHAD RQS double), that should
be set to an initial estimate of the required multiplierλ∗ (see Section 4). The algorithm will only use this
value if %use initial multiplier is set.TRUE. (see below), and otherwise will be reset byRQS solve. A
good initial estimate may sometimes dramatically improve the performance of the package. The default is
initial multiplier = 0.0.

lower is a scalar variables of typeREAL (double precision inGALAHAD RQS double), that holds the value of any
known lower bound on the required multiplierλ∗. A good lower bound may sometimes dramatically improve
the performance of the package, but an incorrect value mightcause the method to fail. Thus resettinglower
from its default should be used with caution. The default islower = - HUGE(1.0) (-HUGE(1.0D0) in GALA-
HAD RQS double).

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

4 RQS (November 24, 2011) GALAHAD

GALAHAD RQS

upper is a scalar variables of typeREAL (double precision inGALAHAD RQS double), that holds the value of any
known upper bound on the required multiplierλ∗. A good upper bound may sometimes dramatically improve
the performance of the package, but an incorrect value mightcause the method to fail. Thus resettingupper
from its default should be used with caution. The default isupper = HUGE(1.0) (HUGE(1.0D0) in GALAH-
AD RQS double).

stop normal andstop hard are scalar variables of typeREAL (double precision inGALAHAD RQS double), that hold
values for the standard convergence tolerances of the method (see Section 4). In particular, the method is
deemed to have converged when the computed solutionx and its multiplierλ satisfy‖x‖M − (λ/σ)1/(p−2) ≤
stop normal ∗max(1,‖x‖M ,(λ/σ)1/(p−2)) or λU −λL ≤ stop hard ∗ max(1, |λL|, |λU|), whereλL andλU are
computed lower and upper bounds on the optimal multiplierλ∗. The defaults arestop normal = stop hard
= u0.75, whereu is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD RQS double).

start invit tol is a scalar variable of typeREAL (double precision inGALAHAD RQS double), that holds the value
of the starting tolerance for inverse iteration. Specifically, inverse iteration is started as soon asλU − λL ≤
start invit tol ∗ max(|λL|, |λU|), whereλL andλU are computed lower and upper bounds on the optimal
multiplier λ∗. The default isstart invit tol = 0.5.

start invitmax tol is a scalar variables of typeREAL (double precision inGALAHAD RQS double), that holds the
value of the starting tolerance for full inverse iteration.Specifically, Specifically,inverse itmax steps of
inverse iteration are started as soon asλU −λL ≤ start invitmax tol ∗ max(|λL |, |λU|), whereλL andλU are
computed lower and upper bounds on the optimal multiplierλ∗. The default isstart invitmax tol = 0.1.

use initial multiplier is a scalar variable of type defaultLOGICAL, that may be set.TRUE. if the user wishes to
use the value of initial multiplier supplied in%initial multiplier, and.FALSE. if the initial value will be
chosen automatically. The default isuse initial multiplier = .FALSE..

initialize approx eigenvector is a scalar variable of type defaultLOGICAL, that be should set.TRUE. if the
user wishes the package to choose an initial estimate of the eigenvector corresponding to the leftmost eigen-
value of the matrix pencil(H,M) in the null-space ofA. If the eigenvector corresponding to the previous
problem (if any) might be useful,initial approx eigenvector should be set.FALSE.. The default is
initialize approx eigenvector = .TRUE..

space critical is a scalar variable of type defaultLOGICAL, that may be set.TRUE. if the user wishes the package
to allocate as little internal storage as possible, and.FALSE. otherwise. The package may be more efficient if
space critical is set.FALSE.. The default isspace critical = .FALSE..

deallocate error fatal is a scalar variable of type defaultLOGICAL, that may be set.TRUE. if the user wishes the
package to return to the user in the unlikely event that an internal array deallocation fails, and.FALSE. if the
package should be allowed to try to continue. The default isdeallocate error fatal = .FALSE..

symmetric linear solver is a scalar variable of type defaultCHARACTER and length 30, that specifies the exter-
nal package to be used to solve any symmetric linear system that might arise. This will only be used if
constraintsAx = 0 are imposed. Current possible choices are’sils’, ’ma27’, ’ma57’, ’ma77’, ’ma86’,
’pardiso’ and’wsmp’. See the documentation for theGALAHAD packageSLS for further details. The default
is symmetric linear solver = ’sils’.

definite linear solver is a scalar variable of type defaultCHARACTER and length 30, that specifies the external
package to be used to solve any symmetric positive-definite linear system that might arise. Current possible
choices are’sils’, ’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma87’, ’pardiso’ and’wsmp’. See the documenta-
tion for theGALAHAD packageSLS for further details. The default isdefinite linear solver = ’sils’.

prefix is a scalar variable of type defaultCHARACTER and length 30, that may be used to provide a user-selected
character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD RQS (November 24, 2011) 5

RQS GALAHAD

stringprefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied
string. If the user does not want to preface lines by such a string, they may use the defaultprefix = "".

SLS control is a scalar variable of typeSLS control type that is used to control various aspects of the factorization
packageSLS. See the documentation forGALAHAD SLS for more details.

IR control is a scalar variable of typeIR control type that is used to control various aspects of the iterative
refinement packageIR. See the documentation forGALAHAD IR for more details.

2.4.3 The derived data type for holding history information

The derived data typeRQS history type is used to hold the value of‖x(λ)‖M , wherex(λ) satisfies(H+λM)x(λ) =
−c andAx(λ) = 0 for a specificλ arising during the computation. The components ofRQS history type are:

lambda is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the valueλ.

x norm is a scalar variable of type defaultREAL, that gives the corresponding value‖x(λ)‖M .

2.4.4 The derived data type for holding timing information

The derived data typeRQS time type is used to hold elapsed CPU and system clock times for the various parts of the
calculation. The components ofRQS time type are:

total is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the total CPU
time spent in the package.

assemble is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the CPU
time spent assembling the matrix (1.1) from its constituentparts.

analyse is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the CPU
time spent analysing required matrices prior to factorization.

factorize is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the CPU
time spent factorizing the required matrices.

solve is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the CPU time
spent using the factors to solve relevant linear equations.

clock total is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the total
elapsed system clock time spent in the package.

clock assemble is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the
elapsed system clock time spent assembling the matrix (1.1)from its constituent parts.

clock analyse is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the
elapsed system clock time spent analysing required matrices prior to factorization.

clock factorize is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the
elapsed system clock time spent factorizing the required matrices.

clock solve is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that gives the
elapsed system clock time spent using the factors to solve relevant linear equations.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

6 RQS (November 24, 2011) GALAHAD

GALAHAD RQS

2.4.5 The derived data type for holding informational parameters

The derived data typeRQS inform type is used to hold parameters that give information about the progress and needs
of the algorithm. The components ofRQS inform type are:

status is a scalar variable of type defaultINTEGER, that gives the current status of the algorithm. See Section2.6 for
details.

alloc status is a scalar variable of type defaultINTEGER, that gives the status of the last internal array allocationor
deallocation. This will be 0 ifstatus = 0.

bad alloc is a scalar variable of type defaultCHARACTER and length 80, that gives the name of the last internal array
for which there were allocation or deallocation errors. This will be the null string ifstatus = 0.

factorizations is a scalar variable of type defaultINTEGER, that gives the number of factorizations of the matrix
(1.1) for differentλ, performed during the calculation.

max entries factors is a scalar variable of type defaultINTEGER, that gives the maximum number of entries in any
of the matrix factorizations performed during the calculation.

len history is a scalar variable of type defaultINTEGER, that gives the number of(λ,‖x(λ)‖M) pairs encountered
during the calculation.

obj is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that holds the value of the
objective function1

2xT Hx + cTx+ f .

multiplier is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that holds the value
of the Lagrange multiplierλ associated with the regularisation.

x norm is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that holds the value of
‖x‖M .

pole is a scalar variable of type defaultREAL (double precision inGALAHAD RQS double), that holds a lower bound
on max(0,−λ1), whereλ1 is the left-most eigenvalue of the matrix pencil(H,M).

hard case is a scalar variable of type defaultLOGICAL, that will be .TRUE. if the “hard-case” has occurred (see
Section 4) and.FALSE. otherwise.

time is a scalar variable of typeRQS time type whose components are used to hold elapsed CPU and system clock
times for the various parts of the calculation (see Section 2.4.4).

history is an array argument of dimensionlen history and typeRQS history type that contains a list of pairs
(λ,‖x(λ)‖M) encountered during the calculation (see Section 2.4.3).

SLS inform is a scalar variable of typeSLS inform type, that holds informational parameters concerning the analy-
sis, factorization and solution phases performed by theGALAHAD sparse matrix factorization packageSLS. See
the documentation for the packageSLS for details of the derived typeSLS inform type.

IR inform is a scalar variable of typeIR inform type, that holds informational parameters concerning the iterative
refinement subroutine contained in theGALAHAD refinement packageIR. See the documentation for the package
IR for details of the derived typeIR inform type.

2.4.6 The derived data type for holding problem data

The derived data typeRQS data type is used to hold all the data for a particular problem between calls of RQS
procedures. This data should be preserved, untouched, fromthe initial call toRQS initialize to the final call to
RQS terminate.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD RQS (November 24, 2011) 7

RQS GALAHAD

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutineRQS initialize is used to set default values and initialize private data.

2. The subroutineRQS solve is called to solve the problem.

3. The subroutineRQS terminate is provided to allow the user to automatically deallocate array components of
the private data, allocated byRQS solve, at the end of the solution process.

We use square brackets[] to indicateOPTIONAL arguments.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL RQS initialize(data, control, inform)

data is a scalarINTENT(INOUT)argument of typeRQS data type (see Section 2.4.6). It is used to hold data about
the problem being solved.

control is a scalarINTENT(OUT)argument of typeRQS control type (see Section 2.4.2). On exit,control contains
default values for the components as described in Section 2.4.2. These values should only be changed after
callingRQS initialize.

inform is a scalarINTENT(OUT) argument of typeRQS inform type (see Section 2.4.5). A successful call to
RQS initialize is indicated when the componentstatus has the value 0. For other return values ofstatus,
see Section 2.6.

2.5.2 The optimization problem solution subroutine

The optimization problem solution algorithm is called as follows:

CALL RQS solve(n, p, sigma, f, C, H, X, data, control, inform[, M, A])

n is a scalarINTENT(IN) argument of type defaultINTEGER, that must be set to the number of unknowns,n.
Restriction: n > 0.

p is a scalarINTENT(IN) variable of type defaultREAL (double precision inGALAHAD RQS double), that must be set
on initial entry to the order of the regularisation,p. Restriction: p > 2.

sigma is a scalarINTENT(IN) variable of type defaultREAL (double precision inGALAHAD RQS double), that must be
set on initial entry to the value of the regularisation weight, σ. Restriction: σ > 0.

f is a scalarINTENT(IN) variable of type defaultREAL (double precision inGALAHAD RQS double), that holds the
scalar valuef for the objective function.

C is an arrayINTENT(IN) argument of dimensionn and type defaultREAL (double precision inGALAHAD RQS -
double), whosei-th entry holds the componentci of the vectorc for the objective function.

H is scalarINTENT(IN) argument of typeSMT TYPE that holds the Hessian matrixH. The following components
are used here:

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

8 RQS (November 24, 2011) GALAHAD

GALAHAD RQS

H%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofH%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten com-
ponents ofH%type must contain the stringCOORDINATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofH%type must contain the stringSPARSE BY ROWS, and for
the diagonal storage scheme (see Section 2.1.4), the first eight components ofH%type must contain the
stringDIAGONAL.

For convenience, the procedureSMT put may be used to allocate sufficient space and insert the required
keyword intoH%type. For example, if we wish to storeM using the co-ordinate scheme, we may simply

CALL SMT_put(H%type, ’COORDINATE’)

See the documentation for theGALAHAD packageSMT for further details on the use ofSMT put.

H%ne is a scalar variable of type defaultINTEGER, that holds the number of entries in thelower triangular part
of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other
three schemes.

H%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD RQS double), that
holds the values of the entries of thelower triangular part of the Hessian matrixH in any of the storage
schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices of thelower triangu-
lar part ofH in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any
of the other three schemes.

H%col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices of the
lower triangular part ofH in either the sparse co-ordinate (see Section 2.1.2), or thesparse row-wise (see
Section 2.1.3) storage scheme. It need not be allocated whenthe dense or diagonal storage schemes are
used.

H%ptr is a rank-one allocatable array of dimensionn+1 and type defaultINTEGER, that holds the starting posi-
tion of each row of thelower triangular part ofH, as well as the total number of entries plus one, in the
sparse row-wise storage scheme (see Section 2.1.3). It neednot be allocated when the other schemes are
used.

X is an arrayINTENT(OUT) argument of dimensionn and type defaultREAL (double precision inGALAHAD RQS -
double), that holds an estimate of the solutionx of the problem on exit.

data is a scalarINTENT(INOUT)argument of typeRQS data type (see Section 2.4.6). It is used to hold data about
the problem being solved. It must not have been alteredby the usersince the last call toRQS initialize.

control is a scalarINTENT(IN) argument of typeRQS control type. (see Section 2.4.2). Default values may be
assigned by callingRQS initialize prior to the first call toRQS solve.

inform is a scalarINTENT(INOUT)argument of typeRQS inform type (see Section 2.4.5). On initial entry, the
componentstatus must be set to1. The remaining components need not be set. A successful call toRQS solve
is indicated when the componentstatus has the value 0. For other return values ofstatus, see Section 2.6.

M is an OPTIONAL scalarINTENT(IN) argument of typeSMT TYPE that holds the diagonally dominant scaling
matrixM . It need only be set ifM 6= I and in this case the following components are used:

M%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofM%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten com-
ponents ofM%type must contain the stringCOORDINATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofM%type must contain the stringSPARSE BY ROWS, and for

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD RQS (November 24, 2011) 9

RQS GALAHAD

the diagonal storage scheme (see Section 2.1.4), the first eight components ofM%type must contain the
stringDIAGONAL.

For convenience, the procedureSMT put may be used to allocate sufficient space and insert the required
keyword intoM%type. For example, if we wish to storeM using the co-ordinate scheme, we may simply

CALL SMT_put(M%type, ’COORDINATE’)

See the documentation for theGALAHAD packageSMT for further details on the use ofSMT put.

M%ne is a scalar variable of type defaultINTEGER, that holds the number of entries in thelower triangular part
of M in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other
three schemes.

M%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD RQS double), that
holds the values of the entries of thelower triangular part of the scaling matrixM in any of the storage
schemes discussed in Section 2.1.

M%row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices of thelower triangu-
lar part ofM in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any
of the other three schemes.

M%col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices of the
lower triangular part ofM in either the sparse co-ordinate (see Section 2.1.2), or thesparse row-wise (see
Section 2.1.3) storage scheme. It need not be allocated whenthe dense or diagonal storage schemes are
used.

M%ptr is a rank-one allocatable array of dimensionn+1 and type defaultINTEGER, that holds the starting posi-
tion of each row of thelower triangular part ofM , as well as the total number of entries plus one, in the
sparse row-wise storage scheme (see Section 2.1.3). It neednot be allocated when the other schemes are
used.

If M is absent, theℓ2-norm,‖x‖2 =
√

xT x, will be employed.

A is anOPTIONAL scalarINTENT(IN) argument of typeSMT TYPE that holds the constraint matrixA. It need only
be set if the constraintsAx = 0 are required, and in this case the following components are used:

A%type is an allocatable array of rank one and type defaultCHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.1.1)is used, the first five components ofA%type
must contain the stringDENSE. For the sparse co-ordinate scheme (see Section 2.1.2), thefirst ten com-
ponents ofA%type must contain the stringCOORDINATE, for the sparse row-wise storage scheme (see
Section 2.1.3), the first fourteen components ofA%type must contain the stringSPARSE BY ROWS.

For convenience, the procedureSMT put may be used to allocate sufficient space and insert the required
keyword intoA%type. For example, if we wish to storeA using the co-ordinate scheme, we may simply

CALL SMT_put(A%type, ’COORDINATE’)

See the documentation for theGALAHAD packageSMT for further details on the use ofSMT put.

A%m is a scalar variable of type defaultINTEGER, that holds the number of rows ofA.

A%ne is a scalar variable of type defaultINTEGER, that holds the number of entries inA in the sparse co-ordinate
storage scheme (see Section 2.1.2). It need not be set for either of the other schemes.

A%val is a rank-one allocatable array of type defaultREAL (double precision inGALAHAD RQS double), that
holds the values of the entries of the constraint matrixA in any of the storage schemes discussed in
Section 2.1.

A%row is a rank-one allocatable array of type defaultINTEGER, that holds the row indices ofA in the sparse
co-ordinate storage scheme (see Section 2.1.2). It need notbe allocated for either of the other schemes.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

10 RQS (November 24, 2011) GALAHAD

GALAHAD RQS

A%col is a rank-one allocatable array variable of type defaultINTEGER, that holds the column indices ofA in
either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.
It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimensionA%m+1 and type defaultINTEGER, that holds the starting
position of each row ofA, as well as the total number of entries plus one, in the sparserow-wise storage
scheme (see Section 2.1.3). It need not be allocated when theother schemes are used.

2.5.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL RQS terminate(data, control, inform)

data is a scalarINTENT(INOUT)argument of typeRQS data type exactly as forRQS solve that must not have been
alteredby the usersince the last call toRQS initialize. On exit, array components will have been deallocated.

control is a scalarINTENT(IN)argument of typeRQS control type exactly as forRQS solve.

inform is a scalarINTENT(OUT)argument of typeRQS inform type exactly as forRQS solve. Only the component
status will be set on exit, and a successful call toRQS terminate is indicated when this componentstatus
has the value 0. For other return values ofstatus, see Section 2.6.

2.6 Warning and error messages

A negative value ofinform%status on exit fromRQS solve or RQS terminate indicates that an error might have
occurred. No further calls should be made until the error hasbeen corrected. Possible values are:

-1. An allocation error occured. A message indicating the offending array is written on unitcontrol%error, and the
returned allocation status and a string containing the nameof the offending array are held ininform%alloc -
status andinform%bad alloc, respectively.

-2. A deallocation error occured. A message indicating the offending array is written on unitcontrol%error and the
returned allocation status and a string containing the nameof the offending array are held ininform%alloc -
status andinform%bad alloc, respectively.

-3. (RQS solve only) One of the restrictionsn > 0, p > 2 or sigma > 0 has been violated.

-9. (RQS solve only) The analysis phase of the factorization of the matrix (1.1) failed.

-10. (RQS solve only) The factorization of the matrix (1.1) failed.

-15. (RQS solve only) The matrixM appears not to be diagonally dominant.

-16. (RQS solve only) The problem is so ill-conditioned that further progress is impossible.

-18. (RQS solve only) Too many factorizations have been required. This may happen ifcontrol%max factorizations
is too small, but may also be symptomatic of a badly scaled problem.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD RQS (November 24, 2011) 11

RQS GALAHAD

2.7 Further features

In this section, we describe an alternative means of settingcontrol parameters, that is components of the variable
control of typeRQS control type (see Section 2.4.2), by reading an appropriate data specification file using the
subroutineRQS read specfile. This facility is useful as it allows a user to changeRQS control parameters without
editing and recompiling programs that callRQS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command
occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify
a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.
All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not
contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more
than 30 characters, and each line of the specfile is limited to80 characters, including the blanks separating keyword
and value.

The portion of the specification file used byRQS read specfile must start with a ”BEGIN RQS” command and
end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by RQS_read_specfile ..)
BEGIN RQS

keyword value
.......
keyword value

END
(.. lines ignored by RQS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN RQS” and “END” delimiter
command lines may contain additional (trailing) strings solong as such strings are separated by one or more blanks,
so that lines such as

BEGIN RQS SPECIFICATION

and

END RQS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN RQS” and “END” delimiters, specification commands may occur in
any order. Blank lines and lines whose first non-blank character is! or * are ignored. The content of a line after a!
or * character is also ignored (as is the! or * character itself). This provides an easy manner to ”commentout” some
specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real
values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for
logical parameters are ”ON”, ” TRUE”, ” .TRUE.”, ” T”, ” YES”, ” Y”, or ”OFF”, ” NO”, ” N”, ” FALSE”, ” .FALSE.” and ”F”.
Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input whenRQS read specfile is called, and the associated device number
passed to the routine in device (see below). Note that the corresponding file isREWINDed, which makes it possible
to combine the specifications for more than one program/routine. For the same reason, the file is not closed by
RQS read specfile.

Control parameters corresponding to the componentsSLS control andIR control may be changed by including
additional sections enclosed by “BEGIN SLS” and “END SLS”, and “BEGIN IR” and “END IR”, respectively. See the
specification sheets for the packagesGALAHAD SLS andGALAHAD IR for further details.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

12 RQS (November 24, 2011) GALAHAD

GALAHAD RQS

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL RQS_read_specfile(control, device)

control is a scalarINTENT(INOUT)argument of typeRQS control type (see Section 2.4.2). Default values should
have already been set, perhaps by callingRQS initialize. On exit, individual components ofcontrol may
have been changed according to the commands found in the specfile. Specfile commands and the component
(see Section 2.4.2) ofcontrol that each affects are given in Table 2.1.

command component ofcontrol value type
error-printout-device %error integer
printout-device %out integer
print-level %print level integer
use-dense-factorization %dense factorization integer
has-h-changed %new h integer
has-m-changed %new m integer
has-a-changed %new a integer
factorization-limit %max factorizations integer
inverse-iteration-limit %inverse itmax integer
max-degree-taylor-approximant %taylor max degree integer
initial-multiplier %initial multiplier real
lower-bound-on-multiplier %lower real
upper-bound-on-multiplier %upper real
stop-normal-case %stop normal real
stop-hard-case %stop hard real
start-inverse-iteration-tolerance %start invit tol real
start-max-inverse-iteration-tolerance %start invitmax tol real
use-initial-multiplier %use initial multiplier logical
initialize-approximate-eigenvector %initialize approx eigenvector real
space-critical %space critical logical
deallocate-error-fatal %deallocate error fatal logical
definite-linear-equation-solver %definite linear solver character
output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components ofcontrol.

device is a scalarINTENT(IN)argument of type defaultINTEGER, that must be set to the unit number on which the
specfile has been opened. Ifdevice is not open,control will not be altered and execution will continue, but
an error message will be printed on unitcontrol%error.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unitcontrol-
%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. In the
first phase of the algorithm, this will include the current estimate of the multiplier and known brackets on its optimal
value. In the second phase, the residual‖x‖M −σ‖x|p−2

M , the current estimate of the multiplier and the size of the
correction will be printed. Ifcontrol%print level ≥ 2, this output will be increased to provide significant detailof
each iteration. This extra output includes times for various phases.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD RQS (November 24, 2011) 13

RQS GALAHAD

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: RQS solve calls theGALAHAD packagesGALAHAD CLOCK, GALAHAD SYMBOLS, GALA-
HAD SPACE, GALAHAD RAND, GALAHAD NORMS, GALAHAD ROOTS, GALAHAD SPECFILE, GALAHAD SLS, GALAHAD IR
andGALAHAD MOP.

Input/output: Output is under control of the argumentscontrol%error, control%out andcontrol%print level.

Restrictions: n > 0, σ > 0, p > 2.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solutionx∗ necessarily satisfies the optimality conditionHx∗+ λ∗Mx ∗ +AT y∗+ c = 0 andAx∗ = 0,
whereλ∗ = σ‖x∗‖p−2 is a Lagrange multiplier corresponding to the regularisation andy∗ are Lagrange multipliers for
the linear constraintsAx = 0, if any. In addition in all cases, the matrixH + λ∗M will be positive semi-definite on
the null=-space ofA; in most instances it will actually be positive definite, butin special “hard” cases singularity is a
possibility.

The method is iterative, and proceeds in two phases. Firstly, lower and upper bounds,λL andλU, onλ∗ are computed
using Gershgorin’s theorems and other eigenvalue bounds. The first phase of the computation proceeds by progres-
sively shrinking the bound interval[λL,λU] until a valueλ for which‖x(λ)‖M ≥ σ‖x(λ)‖p−2

M is found. Herex(λ) and
its companiony(λ) are defined to be a solution of

(H +λM)x(λ)+ATy(λ) =−c and Ax(λ) = 0. (4.1)

Once the terminatingλ from the first phase has been discovered, the second phase consists of applying Newton
or higher-order iterations to the nonlinear “secular” equation ‖x(λ)‖M = σ‖x(λ)‖p−2

M with the knowledge that such
iterations are both globally and ultimately rapidly convergent. It is possible in the “hard” case that the interval in the
first-phase will shrink to the single pointλ∗, and precautions are taken, using inverse iteration with Rayleigh-quotient
acceleration to ensure that this too happens rapidly.

The dominant cost is the requirement that we solve a sequenceof linear systems (4.1). In the absence of linear
constraints, an efficient sparse Cholesky factorization with precautions to detect indefiniteH +λM is used. IfAx = 0
is required, a sparse symmetric, indefinite factorization of (1.1) is used rather than a Cholesky factorization.

Reference:The method is described in detail in

H. S. Dollar, N. I. M. Gould and D. P. Robinson. On solving trust-region and other regularised subproblems in
optimization.Mathematical Programming Computation 2(1) (2010) 21–57.

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

14 RQS (November 24, 2011) GALAHAD

GALAHAD RQS

5 EXAMPLE OF USE

Suppose we wish to solve a problem in 10,000 unknowns, whose data is

H =













−2 1
1 −2 .

. . .
. −2 1

1 −2













, M =













2
2

.
2

2













, c=













1
1
.
1
1













and f = 1,

with regularisation weightσ = 10 and orderp = 3 but no other constraints. Then we may use the following code:

PROGRAM GALAHAD_RQS_EXAMPLE ! GALAHAD 2.4 - 14/05/2010 AT 14:30 GMT.
USE GALAHAD_RQS_DOUBLE ! double precision version
IMPLICIT NONE
INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
INTEGER, PARAMETER :: n = 10000 ! problem dimension
REAL (KIND = wp), DIMENSION(n) :: C, X
TYPE (SMT_type) :: H, M
TYPE (RQS_data_type) :: data
TYPE (RQS_control_type) :: control
TYPE (RQS_inform_type) :: inform
REAL (KIND = wp) :: f = 1.0_wp ! constant term, f
REAL (KIND = wp) :: sigma = 10.0_wp ! regularisation weight
REAL (KIND = wp) :: p = 3.0_wp ! regularisation order
INTEGER :: i, s
C = 1.0_wp
CALL SMT_put(H%type, ’COORDINATE’, s) ! Specify co-ordinate for H
H%ne = 2 * n - 1
ALLOCATE(H%val(H%ne), H%row(H%ne), H%col(H%ne))
DO i = 1, n
H%row(i) = i ; H%col(i) = i ; H%val(i) = - 2.0_wp
END DO
DO i = 1, n - 1
H%row(n + i) = i + 1 ; H%col(n + i) = i ; H%val(n + i) = 1.0_wp
END DO
CALL SMT_put(M%type, ’DIAGONAL’, s) ! Specify diagonal for M
ALLOCATE(M%val(n)) ; M%val = 2.0_wp
CALL RQS_initialize(data, control, inform) ! Initialize control parameters
CALL RQS_solve(n, p, sigma, f, C, H, X, data, control, inform, M = M) ! Solve
IF (inform%status == 0) THEN ! Successful return
WRITE(6, "(1X, I0, ’ factorizations. Objective and Lagrange multiplier =’,&
& 2ES12.4)") inform%factorizations, inform%obj, inform%multiplier
ELSE ! Error returns
WRITE(6, "(’ RQS_solve exit status = ’, I0) ") inform%status
END IF
CALL RQS_terminate(data, control, inform) ! delete internal workspace
DEALLOCATE(H%row, H%col, H%val, M%val)
END PROGRAM GALAHAD_RQS_EXAMPLE

This produces the following output:

4 factorizations. Objective and Lagrange multiplier = -1.2435E+02 2.6592E+01

If we now add the constraint
10000

∑
i=1

xi = 0, for whichA = (1 . . . 1), but revert to unit (M = I) regularisation, we

may solve the resulting problem using the following code:

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD RQS (November 24, 2011) 15

RQS GALAHAD

PROGRAM GALAHAD_RQS_EXAMPLE2 ! GALAHAD 2.3 - 29/01/2009 AT 10:30 GMT.
USE GALAHAD_RQS_DOUBLE ! double precision version
IMPLICIT NONE
INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
INTEGER, PARAMETER :: n = 10000 ! problem dimension
REAL (KIND = wp), DIMENSION(n) :: C, X
TYPE (SMT_type) :: H, A
TYPE (RQS_data_type) :: data
TYPE (RQS_control_type) :: control
TYPE (RQS_inform_type) :: inform
REAL (KIND = wp) :: f = 1.0_wp ! constant term, f
REAL (KIND = wp) :: sigma = 10.0_wp ! regularisation weight
REAL (KIND = wp) :: p = 3.0_wp ! regularisation order
INTEGER :: i, s
C = 1.0_wp
CALL SMT_put(H%type, ’COORDINATE’, s) ! Specify co-ordinate for H
H%ne = 2 * n - 1
ALLOCATE(H%val(H%ne), H%row(H%ne), H%col(H%ne))
DO i = 1, n
H%row(i) = i ; H%col(i) = i ; H%val(i) = - 2.0_wp
END DO
DO i = 1, n - 1
H%row(n + i) = i + 1 ; H%col(n + i) = i ; H%val(n + i) = 1.0_wp
END DO
CALL SMT_put(A%type, ’DENSE’, s) ! Specify 1 by n matrix A
ALLOCATE(A%val(n)) ; A%val = 1.0_wp ; A%m = 1
CALL RQS_initialize(data, control, inform) ! Initialize control parameters
CALL RQS_solve(n, p, sigma, f, C, H, X, data, control, inform, A = A) ! Solve
IF (inform%status == 0) THEN ! Successful return
WRITE(6, "(1X, I0, ’ factorizations. Objective and Lagrange multiplier =’,&
& 2ES12.4)") inform%factorizations, inform%obj, inform%multiplier
ELSE ! Error returns
WRITE(6, "(’ RQS_solve exit status = ’, I0) ") inform%status
END IF
CALL RQS_terminate(data, control, inform) ! delete internal workspace
DEALLOCATE(H%row, H%col, H%val, A%val)
END PROGRAM GALAHAD_RQS_EXAMPLE2

This produces the following output:

10 factorizations. Objective and Lagrange multiplier = 8.9333E-01 4.0000E+00

All use is subject to licence. Seehttp://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

16 RQS (November 24, 2011) GALAHAD

