.
%
]

S

s Uiey,

Science & Technology S EcoLE

@ Facilities Council POLYTECHNIQUE
MONTREAL

o

; :

> 5
05150 it

K

GALAHAD SORT

USER DOCUMENTATION GALAHAD Optimization Library version 5

1 SUMMARY

GALAHAD_SCRT is a suite of Fortran procedures for sorting and permutimgncludes two algorithms (heapsort and
quicksort) to sort integer and/or real vectors, anotheetwder a sparse matrix from co-ordinate to row format, and a
further three tools for in-place permutation and permatainversion.

ATTRIBUTES — Versions: GALAHAD_SORT_si ngl e, GALAHAD_SORT _doubl e. Date: March 2002.0Origin: N. I.
M. Gould, Rutherford Appleton Laboratory, and Ph. L. Toldhiversity of Namur, BelgiumLanguage: Fortran 95
+ TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requiredSk statement such as

Sngle precision version
USE GALAHAD_SORT_si ngl e

Double precision version
USE GALAHAD_SORT_doubl e

2.1 Argument lists and calling sequences
There are seven procedures that may be called by the user.
1. The subroutin80RT_i npl ace_i nvert is used to invert a permutation vector without resortingdivaestorage.

2. The subroutin8CRT_i npl ace_per nut e is used to apply a given permutation to an integer vectoraptibnally,
to a real vector, without resorting to extra storage.

3. The subroutin€CRT_i nver se_per mut e is used to apply the inverse of a given permutation to an értegctor
and, optionally, to a real vector, without resorting to exdtorage.

4. The subroutin&ORT_r eor der _by_r ows is used to reorder a sparse matrix from arbitary co-ordineder to
row order, that is so that the entries for roappear directly before those for row- 1.

5. The subroutiné&SORT_qui cksort is used to sort a given integer/real vectorascending order, optionally
applying the same permutation to integer and/or to a reaoves). It uses the “quicksort” algorithm (see

Section 4).

6. The subroutin€ORT_heapsort _bui | d is used to initialize a procedure to sort a vector of real narslusing
the “heapsort” algorithm (see Section 4).

7. The subroutin€0RT_heapsort _snal | est is used to find, possibly repeatedly, the smallest compafenteal
vector to whichSORT _heapsort _bui | d has been previously applied (see Section 4). SuccessiVieatmn of
this subroutine therefore results in sorting the initiadteein ascending order.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SORT (May 8,2013) 1

SORT GALAHAD

Note that the subroutin€20RT_heapsort _bui | d andSORT_heapsort _snal | est are particularly appropriate if it is
not known in advance how many successive smallest compmogthte vector will be required as the heapsort method
is able to calculate thie+ 1-st smallest component efficiently once it has determineditstk smallest components. If

a complete sort is required, the Quicksort algoritBBRT_qui cksort may be preferred. Both methods are guaranteed
to sort alln numbers inO(nlogn) operations.

We use square brackdts] to indicateOPTI ONAL arguments.

2.1.1 In-place inversion of a permutation

A permutationp of sizen is a vector ofn integers ranging from 1 ta, each integer in this range occurring exactly
once. Its inverse is another permutatmralso of sizen, such thag(p(i)) =i foralli=1,...,n. Inverting a given
permutation without resorting to extra storage is done bevs:

CALL SORT.inplace.invert (n, p)

n is a scalat NTENT(1N) argument of type defaultNTEGER, that must be set by the userripthe size of the permu-
tation to be invertedRestriction: n > 0.

p is a rank-ond NTENT(I NOUT) array argument of dimension at leasénd type either defaultNTEGER or default
REAL (double precision irGALAHAD_SORT _doubl €), that must be set by the user on input so that-tts com-
ponent contains the intege(i). On exit, the elements @f will have overwritten by those df, the inverse of

p.

2.1.2 Applying a given permutation in place

Applying a given permutatiop to a vectorx consists in modifying the vectorsuch that itd-th component appears
(after applying the permutation) in componeati). This is done without resorting to extra storage as follows:

CALL SORT.inplace_permute (n, p [, x] [, ix] [, iy])

n is a scalat NTENT(1 N) argument of type defaultNTEGER, that must be set by the userrpthe size of the permu-
tation to be appliedRestriction: n > 0.

p is a rank-ond NTENT(I NOUT) array argument of dimension at leasénd type either defaultNTEGER or default
REAL (double precision iftALAHAD_SORT _doubl e), that must be set by the user on input so thait-itscompo-
nent contains the integgxi), that is tha-th component of the permutation one wishes to apply. It changed
on exit.

X is an optional rank-oneNTENT(| NOUT) array argument of dimension at leasand typeREAL (double precision in
GALAHAD_SORT _doubl e), whosen first components must be set by the usex i§ present, the componertti)
will have been replaced by(p(i)) on exit.

i X is an optional rank-oneNTENT(| NOUT) array argument of dimension at leasand typel NTEGER, whosen fisrt
components must be set by the user.xlfs present, the componernk(i) will have been replaced by (p(i))
on exit.

iy is an optional rank-oneNTENT(| NOUT) array argument of dimension at leasand typel NTEGER, whosen first
components must be set by the user.ylis present, the component(i) will have been replaced by (p(i))
on exit.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

2 SORT (May 8, 2013) GALAHAD

GALAHAD SORT

2.1.3 Applying the inverse of a given permutation in place

Applying a the inverse of a given permutatignto a vectorx consists in modifying the vector such that itsi-

th component appears (after applying the procedure) in ocolptq(i), whereq is the inverse op. Equivalently,
this can be seen as modifying the vectauch that itsp(i)-th component appears (after applying the procedure) in
component. This is done without resorting to extra storage as follows:

CALL SORT.inverse_permute (n, p [, x] [, ix])

n is a scalaf NTENT(1 N) argument of type defaultNTEGER, that must be set by the userripthe size of the permu-
tation whose inverse is to be applidlestriction: n > 0.

p is a rank-oné NTENT(| NOUT) array argument of dimension at leasand type either defaultNTEGER or default
REAL (double precision iftALAHAD_SORT _doubl e), that must be set by the user on input so that-ttscompo-
nent contains the integg(i), that is thei-th component of the permutation whose inverse is to be egplt is
unchanged on exit.

X is an optional rank-oneNTENT(| NOUT) array argument of dimension at leasand typeREAL (double precision in
GALAHAD_SORT _doubl e), whosen first components must be set by the usex. i present, the componextti)
will have been replaced by(p(i)) on exit.

i X is an optional rank-onENTENT(| NOUT) array argument of dimension at leasand typel NTEGER, whosen first
components must be set by the userxIfs present, the component(i) will have been replaced by (p(i))
on exit.

2.1.4 Reordering a sparse matrix from co-ordinate to row orekr
The matrixA is reordered from co-ordinate to row order as follows:

CALL SORT_reorder_by rows(nr, nc, nnz, Arow, Acol, la, Aval, Aptr, Iptr, &
W liw, error, warning, inform)

nr isascalaf NTENT(I N) argument of type defaultNTEGER, that must be set by the user to the number of rows in
A. Restriction: nr > 0.

nc isascalat NTENT(IN) argument of type defauliNTEGER, that must be set by the user to the number of columns
in A. Restriction: nc> 0.

nnz isascalal NTENT(I N) argument of type defaultNTEGER, that must be set by the user to the number of nonzeros
in A. Restriction: nnz> 0.

A_row is a rank-ond NTENT(| NOUT) array argument of type defaulNTEGER and lengthl a. On entry,A_r ow(k),
k=1,...,nnz give the row indices oA. On exit,A_r owwill have been reordered, bAtr ow(k) will still be the
row index corresponding to the entry with column indegol (k).

A_col is a rank-ond NTENT(| NOUT) array argument of type defadlNTEGER and lengthl a. On entry,A col (k),
k=1,..., nnz give the column indices oA. On exit,A col will have been reordered so that entries in riow
appear directly before those in row 1 fori=1,..., nr —1.

la isascalat NTENT(I N) argument of type defaultNTEGER, that must be set by the user to the actual dimension
of the array®A r ow, A_col andA.val Restriction: | a > nnz.

Aval is a rank-ond NTENT(| NOUT) array argument of type defauREAL (double precision inGALAHAD_SORT _-
doubl e) of lengthl a. On entry,Aval (k), k=1,..., nnz give the values oA. On exit,Aval will have been
reordered so that entries in rovappear directly before those in raw 1 fori =1,..., nr —1 and correspond to
those inA_.r owandA_col .

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SORT (May 8,2013) 3

SORT GALAHAD

Aptr is a rank-oné NTENT(OJT) array argument of type defadINTEGER and lengtH ptr. On exit,Aptr (i),i =
1,..., nr give the starting addresses for the entrie& irow/A_col /Aval inrowi, while A ptr(nr+1) givesthe
index of the first non-occupied componentfaf

I ptr is a scalat NTENT(I N) argument of type defaultNTEGER, that must be set by the user to the actual dimension
of Aptr. Restriction: I ptr >nr + 1.

| Wis a rank-oné NTENT(OUT) array argument of type defallNTEGER and lengtH i wthat is used for workspace.

[iw is a scalaf NTENT(IN) argument of type defaultNTEGER, that gives the actual dimension ol Restriction:
[iw>MX(nr,nc) + 1.

error is a scalat NTENT(I N) argument of type defaultNTEGER, that holds the stream number for error messages.
Error messages will only occuréfror > 0.

warni ng is a scalat NTENT(I N) argument of type defaultNTEGER, that holds the stream number for warning mes-
sages. Warning messages will only occuwdf ni ng > 0.

i nform is a scalat NTENT(QUT) argument of type defaultNTEGER. A successful call t&ORT_r eor der _by _r ows is
indicated whemn nf or mhas the value 0 on exit. For other return valuesrdfor m see Section 2.2.

2.1.5 Quicksort

The vectorx is sorted in acending order as follows:
CALL SORT_quicksort (n, x, inform[, ix] [, rx])

n is a scalat NTENT(I N) argument of type defaultNTEGER, that must be set by the usernipthe number of entries
of x that are to be sortedRestriction: n > 0 andn < 232,

X is a rank-ond NTENT(| NOUT) array argument of dimension at leasand type either defaultNTEGER or default
REAL (double precision irftALAHAD_SORT _doubl €), whose firsh components must be set by the user on input.
On successful return, these components will have beerdsiorgesscending order.

i nform is ascalaf NTENT(QUT) argument of type defaultNTEGER. A successful call t§ORT_qui cksort is indicated
wheni nf or mhas the value 0 on exit. For other return valuesrdfor m see Section 2.2.

i X is an optional rank-oneENTENT(| NOUT) array argument of dimension at leasand type default NTEGER. If i x
is present, exactly the same permutation is applied to thgoaents of x as to the components a&f For
example, the inverse permutation will be providethifi) is settoi, fori=1,...,non entry.

rx is an optional rank-oneENTENT(| NOUT) array argument of dimension at leastind type defaulREAL (double
precision inGALAHAD_SORT _doubl e). If r x is present, exactly the same permutation is applied to thmpooents
of rx as to the components wf

2.1.6 Heapsort

Building the initial heap The initial heap is constructed as follows:

CALL SORT_heapsort _build (n, x, inform[, ix])

n is a scalat NTENT(I N) argument of type defaultNTEGER, that must be set by the usernipthe number of entries
of Athat are to be (partially) sorte®Restriction: n > 0.

X is a rank-ond NTENT(| NOUT) array argument of dimension at leasand type either defaultNTEGER or default
REAL (double precision irftALAHAD_SORT _doubl €), whose firsh components must be set by the user on input.
On successful return, the elementsafill have been permuted so that they form a heap.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

4 SORT (May 8, 2013) GALAHAD

GALAHAD SORT

i nform is a scalail NTENT(QUT) argument of type defaultNTEGER. A successful call t&ORT_heapsort _bui | d is
indicated when nf or mhas the value 0 on exit. For other return valuesrdfor m see Section 2.2.

i X is an optional rank-oneNTENT(| NOUT) array argument of dimension at leasand type default NTEGER. If i x
is present, exactly the same permutation is applied to thegoaents of x as to the components af For
example, the inverse permutation will be providethifi) is settoi, fori=1,...,non entry.

Finding the smallest entry in the current heap To find the smallest entry in a given heap, to place this eritityea
end of the list of entries in the heap and to form a new heaptiv@élremaining entries:

CALL SORT_heapsort _smallest (m x, inform[, ix])

m is a scalat NTENT(1 N) argument of type defaultNTEGER, that must be set by the userrtp the number of entries
of Athat lie on the heap on entriRestriction: m > 0.

X is a rank-ond NTENT(| NOUT) array argument of dimension at leasaind type either defaultNTEGER or default
REAL (double precision iftALAHAD_SCRT _doubl e) whose firstncomponents must be set by the user on input
so that they form a heap. In practice, this normally meanisthiey have been placed on a heap by a previous
call to SORT_heapsort _bui | d or SORT_heapsort _snal | est. On output, the smallest of the firscomponents
of x will have been moved to positior{ 1) and the remaining components will now occupy locatiors 1.

m 1 of x and will again form a heap.

i nform is a scalat NTENT(OQUT) argument of type defaultNTEGER. A successful call t8ORT_heapsort _smal | est
is indicated whem nf or mhas the value 0 on exit. For other return valuesrdfor m see Section 2.2.

i X is an optional rank-onENTENT(| NOUT) array argument of dimension at leasind type default NTEGER. If i x is
present, exactly the same permutation is applied to the ooergs of x as to the components pf

Finding the k smallest components of a set afelements To find thek smallest components of a s€xy, x2, ..., Xn},
of n elements, the user should firstly c&IRT_heapsort _bui | d with n = n andx; to x, stored inx(1) tox(n). This
places the componentsxfon a heap. This should then be followedlbgalls of SORT_heapsort _smal | est, with m
=n—i+1fori=1,.. k The requireck smallest values, in increasing order, will now occupy posgn—i -+ 1 of
xfori=1..k

2.2 Warning and error messages

A positive value of nf or mon exit fromSORT _r eor der _by _r ows, SORT_qui cksort, SORT_heapsort _buil d or
SORT_heapsort _smal | est indicates that an input error has occurred. The other argtswéll not have been altered.
The only possible values are:

1. One or more of the restrictioms > 0, nc > 0, nnz > 0 (SORT_r eor der _by_rows), n > 0 (SORT_qui cksort,
SORT_heapsort _bui | d) orm> 0 (SORT_heapsort _snal | est) has been violated.

2. One of the restrictionisa > nnz (SORT_r eor der _by_r ows) orn < 232 (SORT_qui cksor t) has been violated.
3. The restriction i w > MAX(nr, nc) +1 (SORT_r eor der _by_r ows) has been violated.
4. The restrictioh ptr > nr+1 (SORT_r eor der _by_r ows) has been violated.

5. All of the entries input irA_r owandA col are out of range.

A negative value of nf or mon exit fromSORT_r eor der _by _r ows indicates thaf has been successfully reordered,
but that a a warning condition has occurred. The only possiglues are:

-1. There were duplicate input entries, which have been setinm

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SORT (May 8,2013) 5

SORT GALAHAD

-2. There were input row entries out of range, which have lgsored.

-3. There were input column entries out of range, which haenbignored.

3 GENERAL INFORMATION

Use of common: None.

Workspace: None.

Other routines called directly: None.
Other modules used directly: None.
Input/output: None.

Restrictions: nr > 0,nc > 0,nnz > 0,la >nnz, liw> MAX(nr,nc)+1, | ptr > nr+1, (SORT_r eor der _by_r ows),
n > 0 (SORT_qui cksort andSORT_heapsort _bui | d), m > 0 (SORT_heapsort _smal | est) andn < 232
(SORT_qui cksort)

Portability: 1SO Fortran 95 + TR 15581 or Fortran 2003. The package is dhsafe.

4 METHOD

4.1 Quicksort

The quicksort method is due to C. A. R. Hoare (Computer JOuBnél1962), 10-15).

The idea is to take one component of the vector to sortxgagnd to move it to the final position it should occupy
in the sorted vector, say positign While determining this final position, the other compomseaate also rearranged
so that there will be none with smaller value to the left ofifjos p and none with larger value to the right. Thus the
original sorting problem is transformed into the two disjosubproblems of sorting the firpt— 1 and the lash — p
components of the resulting vector. The same techniqueisdpplied recursively to each of these subproblems. The
method is likely to sort the vectorin O(nlogn) operations, but may require as manyGi(®?) operations in extreme
cases.

4.2 Heapsort

The heapsort method is due to J. W. J. Williams (Algorithm,Z3@mmunications of the ACM (1964), 347-348).
SubroutinéSORT_heapsort _bui | d is a partial amalgamation of Williams’ Algol procedusetheap andinheap while
SORT_heapsort _smal | est is based upon his procedummgheap andswopheap.

The elements of the séki, Xz, ..., Xy} are first allocated to the nodes of a heap. A heap is a binagyirtrehich the
element at each parent node has a numerical value as smalkasber than the elements at its two children. The
smallest value is thus placed at the root of the tree. Thisevid now removed from the heap and a subset of the
remaining elements interchanged until a new, smaller, ireapnstructed. The smallest value of the new heap is now
at the root and may be removed as described above. The ekepfethie initial set may thus be arranged in order
of increasing size, thieth largest element of the array being found in thl sweep of the method. The method is
guaranteed to sort aflnumbers inO(nlogn) operations.

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

6 SORT (May 8, 2013) GALAHAD

GALAHAD SORT

5 EXAMPLE OF USE

The following example is a somewhat unnatural sequence @fatipns, but illustrates the use of tHeRT tools. It
uses the data vector

X={X1,X2,...,%20} = {-5,-7,2,9,0,-3,3,5-2,-6, 8, 7,—1,—-8, 10,4, 6,-9, 1, 4}.
Suppose now that we wish to perform the following successgferations:

1. sort the components &fin ascending order and compute the associated inverse faiom,
apply this permutation to the resulting vector (in oraergcover its original ordering),

restore the permutation to the identity by sorting its ponents in ascending order,

2.

3.

4. find the 12 smallest componentsxdnd the associated inverse permutation,

5. inverse this permutation (which yields the permutatisedito sort the 12 smallest components),
6.

apply to the permutedthe inverse of the this latest permutation (thus recovdtingriginal ordering again).

Then we may use the following code

PROGRAM GALAHAD SORT_EXAMPLE

USE GALAHAD SORT doubl e I doubl e precision version
I MPLICI'T NONE

| NTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

I NTEGER, PARAMETER :: n = 20

INTEGER :: i, m inform

INTEGER :: p(n)

REAL (KIND =wp) :: x(n)

x=(/ -50, -7.0, 2.0, 9.0, 0.0, -3.0, 3.0, 5.0, -2.0, -6.0, &
8.0, 7.0, -1.0, -8.0, 10.0, -4.0, 6.0, -9.0, 1.0, 4.0 /) I val ues
p=(1,2, 3, 4,5 6, 7, 8 9, 10, 11, 12, 13, 14, &
15, 16, 17, 18, 19, 20 /) I indices

I wite the initial data
WRITE(6, "(/' The vector x is" [/ 2(10 (F5.1, 2X) /)) ") x(Llin)
WRITE(6, "(' The pernutation is’ / 20 (2X 12) /) ") p(1in)
I sort x and obtain the inverse pernutation
WRITE(6, "(' Sort x in ascending order’ [/)")
CALL SORT_quicksort(n, x, inform p)
WRITE(6, "(' The vector x isnow / 2(10 (F5.1, 2X) /)) ") x(L:n)
WRITE(6, "(' The permutation is now / 20 (2X 12) /) ") p(1:n)
I apply the inverse permutation to x
WRITE(6, "(' Apply the pernutation to x’ /)")
CALL SORT_inplace_pernute(n, p, x)
WRITE(6, "(' The vector x isnow / 2(10 (F5.1, 2X) /)) ") x(1in)
I restore the identity pernutation
WRITE(6, "(' Restore the identity pernutation by sorting’ /)")
CALL SORT_quicksort(n, p, inform)
WRITE(6, "(' The pernutation is now / 20 (2X 12) /) ") p(Lin)
I get the 12 snallest conponents and the associated inverse pernutation
WRITE(6, "(' Get the 12 snallest conponents of x' [/)")

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SORT (May 8, 2013) 7

SORT

GALAHAD E=

CALL SORT_heapsort_build(n, x, inform p) !

Build the heap

DOi =1, 12
m=n-i+1
CALL SORT_heapsort_smallest(m x, inform p) I Reorder the variables
WITE(6, "(' The ', 12, '"-th(-st) smallest value, x(', 12, ') is ', &
& F5.12) ") i, p(m), x(m)
END DO

WRITE(6, "(/ ' The pernutation is now /
I conpute the direct permutation in p

20 (2% 12) /) ") p(1n)

WRITE(6, "(' Conpute the inverse of this permutation” /)")

CALL SORT_inplace_invert(n, p)
WRITE(6, "(' The pernutation is now /
I apply inverse pernutation

20 (02X 12) /1) ") p(Ln)

WRITE(6, "(' Apply the resulting permutation to x’ /)")

CALL SORT inverse permute(n, p, X)

WRITE(6, "(' The final vector is” [/ 2(10 (F5.1, 2X) /)) ") x(1in)

STOP
END PROGRAM GALAHAD SCRT_EXAMPLE

This produces the following output:

The vector X is

-5.0 -7.0 2.0 9.0 0.0 -3.0 3.0 5.
8.0 7.0 -1.0 8.0 10.0 -4.0 6.0 -9
The permutation is

1 2 3 4 5 6 7 8 9 10 11 12 13
Sort x in ascending order
The vector x is now
-9.0 -80 -7.0 -6.0 -50 -40 -3.0 -2
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.
The permutation is now

8 14 2 10 1 16 6 9 13 5 19 3 7
Apply the pernutation to x
The vector x is now
-5.0 -7.0 2.0 9.0 0.0 -3.0 3.0 5.
8.0 70 -1.0 -80 10.0 -4.0 6.0 -9

Restore the identity pernutation by sorting

The permutation is now

1 2 3 4 5 6 7 8 9 10 11 12 13

Get the 12 smallest conponents of X

o o

14

20

14

.
© =

.
=

2.0 -6.0
1.0 4.0
15 16 17 18 19 20
0 0.0
0 10.0
8 17 12 11 4 15
0 -6.0
0 4.0

15 16 17 18 19 20

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

8 SORT (May 8, 2013)

GALAHAD

GALAHAD SORT

The 1-th(-st) smallest value, x(18) is -9.0
The 2-th(-st) smallest value, x(14) is -8.0
The 3-th(-st) smallest value, x(2) is -7.0
The 4-th(-st) smallest value, x(10) is -6.0
The 5-th(-st) smallest value, x(1) is -5.0
The 6-th(-st) snallest value, x(16) is -4.0
The 7-th(-st) smallest value, x(6) is -3.0
The 8-th(-st) smallest value, x(9) is -2.0
The 9-th(-st) smallest value, x(13) is -1.0
The 10-th(-st) smallest value, x(5) is 0.0
The 11-th(-st) smallest value, x(19) is 1.0
The 12-th(-st) smallest value, x(3) is 2.0

The permutation is now
7 20 12 17 8 4 11 15 3 19 5 13 9 6 16 1 10 2 14 18

Conpute the inverse of this permutation

The permutation is now
6 18 9 6 11 14 1 5 13 17 7 3 12 19 8 15 4 20 10 2

Apply the resulting permutation to x

The final vector is
-5.0 -7.0 2.0 9.0 0.0
8.0 7.0 -1.0 -8.0 10.0

-3.0
-4.0

o w
o o

© o
oo

'
=

oo
'

o

oo

All use is subject to licence. Sebttp://gal ahad. rl. ac. uk/ gal ahad- ww/ cou. htm .
For any commercial application, a separate license must begned.

GALAHAD SORT (May 8,2013) 9

